Central Tibetan Plateau atmospheric trace metals contamination: a 500year record from the Puruogangri ice core

Emilie Beaudon^{1*}, Paolo Gabrielli^{1, 2}, M. Roxana Sierra-Hernández¹, Anna Wegner¹, Lonnie G. Thompson^{1, 2}

¹ Byrd Polar and Climate Research Center, The Ohio State University, 1090 Carmack Road, Columbus, OH 43210-1002, USA
² School of Earth Sciences, 275 Mendenhall Laboratory, The Ohio State University, 125 South Oval Mall, Columbus, OH 43210, USA

*corresponding author: <u>beaudon.1@osu.edu</u>

Appendices

	LOD ¹	Procedural blank		Accuracy	
Trace	This	Artificial	Ultra Pure	TMRain-95	TMRain-95
Element	study	Ice Core	Water	Found ²	Certified
	pg g ⁻¹	pg g ⁻¹	pg g ⁻¹	pg g ⁻¹	pg g ⁻¹
Ag	0.1	0.6 ± 0.1	0.6 ± 0.1		
As	2	< LOD	< LOD	952 ± 107	$1070\ \pm 250$
Ba	7	18 ± 8	14 ± 5	762 ± 149	$730\ \pm 150$
Bi	0.02	0.04 ± 0.01	0.04 ± 0.04	743 ± 39	$630\ \pm 260$
Cd	0.2	0.2 ± 0.02	0.2 ± 0.1	423 ± 31	$480\ \pm 120$
Co	0.1	1 ± 0.2	0.8 ± 0.1	222 ± 9	220 ± 37
Cr	1	10 ± 6	4 ± 0.3	739 ± 72	$790\ \pm 170$
Cs	0.1	0.4 ± 0.1	0.3 ± 0.1		
Cu	3	25 ± 6	20 ± 1	5708 ± 570	6200 ± 930
Ga	1	2 ± 0.03	2 ± 0.2		
Mn	0.5	4 ± 1	3 ± 0.6	5804 ± 405	$6100\ \pm 780$
Nb	0.1	0.6 ± 0.3	0.4 ± 0.1		
Ni	1	4 ± 1	3 ± 0.6	757 ± 75	$800\ \pm 170$
Pb	1	<lod< td=""><td>< LOD</td><td>264 ± 31</td><td>$290\ \pm 93$</td></lod<>	< LOD	264 ± 31	$290\ \pm 93$
Rb	2	9 ± 3	5 ± 0.6		
Sb	0.1	0.5 ± 0.06	0.3 ± 0.1	296 ± 19	$350\ \pm 100$
Sn	0.2	16 ± 4	11 ± 8		
Sr	7	85 ± 1	75 ± 16	1593 ± 244	1700 ± 260
Tl	0.01	0.03 ± 0.01	0.02 ± 0.01	297 ± 17	$330\ \pm 72$
U	0.02	0.09 ± 0.01	0.1 ± 0.02	236 ± 30	$250\ \pm 60$
V	1	3 ± 0.2	3 ± 1	599 ± 52	$640\ \pm 120$
Zn	3	7 ± 2	7 ± 1		
	ng.g ⁻¹	ng.g ⁻¹	ng.g ⁻¹	ng.g ⁻¹	ng.g ⁻¹
Al	0.02	0.8 ± 0.3	0.6 ± 0.4	2 ± 1	2 ± 1
Fe	0.1	0.8 ± 0.9	0.3 ± 0.03	22 ± 11	24 ± 4
Li	0.07	0.2 ± 0.01	0.2 ± 0.02	0.2 ± 0.5	0.9 ± 0.08
Mg	0.02	0.2 ± 0.05	0.2 ± 0.05		
Na	0.2	0.5 ± 0.07	0.3 ± 0.07		
Ti	0.01	0.07 ± 0.006	$5\ 0.07\pm 0.06$		

Appendix A

Table A: Limit of detection, procedural blank and accuracy of trace element analysis. ¹ The limit of detection (LOD) is three times the standard deviation of 10 measurements of ultrapure water. ² The reported concentration account for the dilution factor (≈ 20).

Figure A: Median concentration of the measured trace elements in Puruogangri ice core. The boxes represent the interquartile range (IQR), the whiskers show the dispersion of the data.

Appendix B

Figure B: 5-year EOF 1 (representing the crustal dust variability), 5-year EOF 2 (representing the evaporitic component of the crustal dust) and 5-year EOF 3 (representing the non-crustal dust component) compared with 5-year median concentration of total dust particles, chloride (salts indicator, Thompson et al., (2006)) and EF* (Ag, Cd, Pb, Sb and Tl EF composite).

Figure C: Comparison of the 5-year average of annual medians of Tl EF in Puruogangri ice core (pink bars) and the annual Tl EF in the ACT2 core (Greenland, McConnell and Edwards, 2008).

References

McConnell JR, Edwards R. Coal burning leaves toxic heavy metal legacy in the Arctic. Proc. Natl. Acad. Sci. U.S.A. 2008;105:12140–4.

Thompson L, Yao T, Davis M, Mosley-Thompson E, Mashiotta T, Lin P-N, Mikhalenko V, Zagorodnov V. Holocene climate variability archived in the Puruogangri ice cap on the central Tibetan Plateau. Annals of Glaciology 2006;43:6169.

Yang B. Horses, silver, and cowries: Yunnan in global perspective. Journal of World History 2004.