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[1] Ice core-derived accumulation records from Greenland have been proposed as proxies
for North Atlantic Oscillation (NAO) reconstruction. In a series of single-site analyses,
accumulation records from ice cores drilled in western Greenland were found to exhibit
the strongest linear association with NAO. In this paper, we expand on these findings
by proposing a spatiotemporal statistical model to explore further the relationship between
NAO and the accumulation records from 35 firn and ice cores drilled in western and
southern Greenland. In particular, we propose a temporal extension of the Bayesian
spatially varying coefficient regression model, which is fit using a Markov chain Monte
Carlo algorithm. This model readily accommodates the irregular features of the data
(i.e., variation in record lengths and irregular spacing among ice core locations) and the
serial dependence within individual records. Using our statistical model, we are able to
exploit the spatial dependence structure of the derived accumulation-NAO relationship to
explore the regional patterns in the strength of this relationship. Our findings support
previous work that identified a region in western Greenland where derived accumulation is
most correlated with NAO. However, we also identify a region further inland to the
east and south where the estimated strength of the linear accumulation-NAO relationship
is weaker, but more certain, than in the previously identified region. Thus, our findings can
be used to guide decisions regarding where to locate future drilling efforts in Greenland by
weighing the trade-off between the potential strength of the accumulation-NAO
relationship and its uncertainty.
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1. Introduction

[2] In this paper, we propose a novel Bayesian hierarchi-
cal statistical model for exploring spatial variation in the
relationship between the North Atlantic Oscillation (NAO),
an important climatic phenomenon discussed below, and net
annual accumulation across Greenland. This approach
allows us to synthesize a large number of ice core-derived
accumulation records in order to identify regional patterns
in the strength of the accumulation-NAO relationship. As a
result, inferences derived from our statistical model can be
helpful when selecting specific ice core records to be used
for NAO reconstruction and sites for future ice core drilling
efforts.
[3] NAO refers to temporal changes in the atmospheric

pressure differences between the region of low sea level
pressure (SLP) near Iceland and the region of higher SLP in
the subtropics. Changes in the strength of this meridional

pressure dipole affect the zonal winds across the North
Atlantic Ocean and the effects are felt throughout Europe
and parts of Greenland [Hurrell, 1995]. NAO variability is
also linked to changes in storm tracks [Rogers and van
Loon, 1979; Hurrell et al., 2003], cyclone activity [Rogers,
1990; Serreze et al., 1997], precipitation patterns [Bromwich
et al., 1999] and sea ice extent [Deser et al., 2000]. As a
result, knowledge of the historical behavior of this system
provides a context for understanding the implications of
current and future climatic trends. NAO is characterized by
an index derived as the difference in the mean monthly
surface pressure anomalies between Iceland and the Azores.
Various meteorological records have been used to construct
NAO indexes [Rogers, 1984; Hurrell, 1995; Jones et al.,
1997; Vinther et al., 2003a]. In addition, there have been
several attempts to extend NAO indexes further into the past
by substituting various climate proxies (e.g., tree rings,
corals, ice cores) for the unavailable meteorological records
[Appenzeller et al., 1998a, 1998b; Cook, 2003, and refer-
ences therein; Vinther et al., 2003b; Mosley-Thompson et
al., 2005, and references therein].
[4] Since precipitation over Greenland is modulated by

the NAO, ice core-derived accumulation records from
Greenland have been proposed as potential proxies for use
in NAO reconstructions. Such records are available for a
number of locations throughout Greenland. Some of the
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older records (e.g., from Dye 3, see Figure 1) or records
derived from cores located in central Greenland have been
used for NAO reconstruction, with limited success. On
the basis of an analysis of precipitation predicted using
the ECMWF ERA-15 reanalysis (http://www.ecmwf.int/
research/era/Project/index.html), [Appenzeller et al., 1998a]
demonstrated that the strongest correlation (negative) be-
tween precipitation and NAO is in the region west of central
Greenland. Subsequent work [Appenzeller et al., 1998b]
found that the ice core-derived accumulation record from a
PARCA (Program for Arctic Regional Climate Assessment)
core located in western Greenland (NASA-U, see Figure 1)
is more highly correlated with NAO than a composite
accumulation record constructed from five cores drilled in
the central Greenland (summit) region. Expanding on this
finding, [Mosley-Thompson et al., 2005] used five additional
PARCA cores located across western Greenland to further
explore the spatial and temporal variation in the correlation

between derived annual accumulation and NAO. Their
analysis demonstrated that the relationship between NAO
and accumulation has changed over time, especially as
recorded at higher-latitude sites. However, despite these
changes, the correlation between NAO and precipitation
consistently remains strongest for ice cores drilled in
western Greenland.
[5] A limitation of previous attempts to characterize the

spatial variation in the relationship between NAO and
precipitation over Greenland is that regional patterns were
assessed on a site-by-site basis by examining inferences
derived from single-core analyses. In these studies, the
correlation between NAO and accumulation was computed
at each site and then the variation in these single-site
correlations over space was interpreted. The fact that
NAO and accumulation were correlated at each site does
not easily permit formal statistical inferences to be made
about spatial patterns in the accumulation-NAO relation-
ship. For example, it is not possible to assess whether the
correlation between NAO and accumulation a region, as
opposed to at one site, is statistically significant. Another
limitation of this approach is that shorter ice cores must be
excluded from the analysis since, taken separately, they
contain little information. However, given the large number
of shorter records available, it is worthwhile to explore
whether they can be used in conjunction with the longer
records to provide a more detailed description of the spatial
patterns in the accumulation-NAO relationship.
[6] Here, we explore the spatially varying relationship

between ice core-derived net annual accumulation and NAO
using a Bayesian hierarchical model. Our statistical model
provides a mechanism for synthesizing the various accu-
mulation records recovered across Greenland in a manner
that accommodates the spatial dependence inherent in the
accumulation process. Inferences regarding the strength of
the linear association between NAO and accumulation at
each location are derived using all cores collected at, or near
the location of interest. In addition, our Bayesian model
readily provides information about the spatial variation in
the uncertainty in the accumulation-NAO relationship aris-
ing from the differing spatial and temporal coverage of the
available ice core records.
[7] We describe the data used in our analysis in section 2.

Then, in section 3, we develop a Bayesian hierarchical
regression model for exploring the spatial variation in
annual accumulation-NAO relationship and present summa-
ries of our inferences in section 4. We conclude with a
discussion of our results and propose directions for future
research in section 5.

2. Data

[8] In our study, we use an annual (January to December)
NAO index [Hurrell, 1995], that was obtained from http://
www.cgd.ucar.edu/cas/jhurrell/indices.data.html#naostatann.
This index dates back to 1865 and was constructed from
normalized sea level pressures (SLP) between Ponta Delgada,
Azores and Stykkisholmur/Reykjavik, Iceland.
[9] In addition, we use records of net annual mass

accumulation (henceforth annual accumulation) derived
from 35 firn and ice cores (henceforth cores), most of
which were collected in western and southern Greenland

Figure 1. Map of Greenland showing the sites where the
cores used in this study were drilled. The Summit region
includes three different cores (T2, T5 and GISP2). The
black line delineates our study region.
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(Figure 1) by PARCA. The timescale for each core was
established using seasonal variations in both chemical (d18O,
NO3

�, H2O2) and physical (insoluble dust) constituents,
coupled with known volcanic horizons (see Mosley-
Thompson et al. [2001, 2003] for details). For 32 of the
35 cores, the annual layer thicknesses were determined using
the successive winter minima in both the insoluble dust
concentration (dust) and the oxygen isotopic ratio (d18O).
This resulted in two annual accumulation records for each
core; each pair was then averaged to produce the annual
accumulation record for each core used in this study. For the
remaining three cores, only dust-derived (Summit Site T2
and T5 cores, see Figure 1) or d18O-derived (Summit Site
GISP2 core) annual layer thicknesses are available. The
annual layers were converted to water equivalent (w.e.) using
the density measurements for each core. The latitude/
longitude coordinates for each of the core locations was
converted to Universal Transverse Mercator (UTM) coordi-
nates (Zone 26). This projection implies that the units for
Euclidean distances between pairs of locations, which are
needed in our statistical model, are kilometers.
[10] The variation in annual accumulation records derived

from the ice cores results from a combination of processes
operating at different temporal scales. For example, varia-
tions on shorter temporal scales may result from processes
such as isotropic diffusion in the firn and drifting (erosion
and redeposition), while variation at longer scales are more
likely to reflect climatological processes. To isolate the
longer-scale temporal variations, we follow the approach
taken by Appenzeller et al. [1998a] (and subsequently
Mosley-Thompson et al. [2005]). We first detrended each
accumulation record by fitting a simple linear regression
model (using ordinary least squares). The residual time
series were then standardized to have a mean of zero and
a variance of one. Given our interest in the variations (but
not trends) over longer scales, a 5-point triangular filter with
coefficients [1/
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applied to the standardized residual annual accumulation
time series. (Filtering is the standard approach to analyze
time series over different timescales [e.g.,Madden, 1986]. If
~Ai, j,t is the net annual accumulation at location i, core j, at

time t before filtering, then the filtered annual accumulation,
Ai, j,t (used in our statistical analysis described in section 3)
is defined to be

Ai;j;t ¼
1ffiffiffiffiffi
19

p ~Ai;j;t�2 þ 2~Ai;j;t�1 þ 3~Ai;j;t þ 2~Ai;j;tþ1 þ ~Ai;j;tþ2

� �
:

The effect of this filter on the time series can be explored by
examining the associated squared gain function, which is
defined as the modulus squared of the Fourier transform of
the filter coefficients. Figure 2 displays the squared gain
function associated with the 5-point triangular filter and
reveals that it down-weights the high-frequency compo-
nents in the signal (periods of less than 5 years), while
emphasizing the decadal features. We carried out the same
procedure (detrending, standardizing, and filtering with the
5-point filter) to the NAO index. As a result, our statistical
analysis is designed to explore the relationship between
NAO and annual accumulation at the decadal scale. We note
that another way to isolate the decadal patterns is to directly
model 10-year averages. However, a key disadvantage with
this approach is that we lose a substantial amount of
information by subsampling the data, especially in terms of
the fidelity of the observed long-range signature.
[11] Filtering may introduce additional serial correlation,

or autocorrelation, into the time series. The type of serial
dependence introduced is dictated by the form of the filter.
To illustrate this phenomenon, consider a time series con-
sisting of a white noise, or uncorrelated, process. According
to the linear-time-invariant filtering result for stationary
time series [see Percival and Walden, 1993, chapter 5],
after applying the 5-point triangular filter, the resulting
process is a moving average process of order four, which
is more correlated than the original unfiltered signal. Thus,
in order to account for autocorrelation in our data, which
may in part be due to the initial filtering, we include an
underlying autoregressive process of order one in our
statistical model, which is described in the next section.
[12] Before we introduce our statistical model for explor-

ing the spatial variation in the strength of the relationship
between the standardized NAO time series and the various

Figure 2. Squared gain function associated with the 5-point triangular filter with coefficients [1/
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]. The time periods for which the curve is highest are the periods that

contribute the most to the filtered sequence. Thus, this filter emphasizes periods longer than 5 years
(periods to the left of the vertical dotted line).
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standardized and filtered accumulation time series in section 3,
we provide some graphical motivation for our choice of
statistical model. Figure 3 (left) contains scatterplots of
NAO versus accumulation for five ice cores (D1, JAV2,
UAK5, 6945.1, and NASA-U Core 1) of different lengths.
The ordinary least squares regression line has been added to
each scatterplot to illustrate the linear relationship between
NAO and accumulation. While there does appear to be some
evidence of a linear relationship for all cores (sites), the
strength of association, as measured by the correlation
coefficient r, varies by the core (site). The two right hand
panels display the sample autocorrelation function (ACF)
and the sample partial autocorrelation function (PACF) for
the residuals from the ordinary least squares regression line

for each core. In our statistical analysis, we model the
residuals as an first-order autoregressive (AR(1)) process
plus measurement error, which is equivalent to the residuals
being a autoregressive moving average (ARMA(1,1)) pro-
cess [Brockwell and Davis, 2002, exercise 2.9]. Note that
the sample ACF is significantly different from zero at lag
one and then decays like a sinusoid and the sample PACF is
significant at lag one and then decays sinusoidally for longer
lags. These patterns indicate that the AR(1) error plus
measurement error model choice is a reasonable model for
capturing the temporal dependence in the residual time
series (see Brockwell and Davis [2002, chapter 5] for further
discussion of model selection using the sample ACF and
PACF). The lag one sample PACF is close to 0.7 for each

Figure 3. (left) Scatterplots of the filtered and standardized accumulation (in water equivalent) versus
the NAO series for five cores in the study region. The solid line denotes the ordinary least squares line fit
to each pair of time series. The sample correlation coefficient, r, is also provided. (middle and right)
Sample ACF and PACF for the residuals from the ordinary least squares fit for each of the five cores.
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core (due in part to the fact that the same filter was used),
which supports our assumption that the AR(1) partial
autocorrelation parameter should be the same across sites.

3. Methods

[13] Recently, statistical models that can be broadly
classified as spatially varying coefficient (SVC) models
have been proposed as tools for exploring spatial variation
in the relationship between explanatory variables and a
response variable. One popular type of SVC model is the
geographically weighted regression (GWR) model, which
was proposed by Fotheringham et al. [2002]. A GWR
model is constructed by fitting a series of weighted linear
regression models associated with each location where the
variables are observed. For a particular location, or focal
location, the corresponding weights for the regression
model are calculated using a kernel function that weights
each of the other observations on the basis of its distance to
the focal location. As a result of this weighting scheme,
observations at locations that are close to the focal location
contribute more in assessing the relationship between the
explanatory variables and the response.
[14] Our analysis is based on a Bayesian alternative toGWR

proposed by Gelfand et al. [2003]. This model is designed to
explore the spatial variation in the relationship between
explanatory and response variables that are spatially
referenced. We build on this modeling framework by extend-
ing the standard Bayesian SVC model to accommodate
temporal dependence in the process. Our approach allows us
to account for the serial dependence in the accumulation and
NAO records and is also amenable to the lack of consistency
(length and spacing) among the ice core records.
[15] Following Gelfand et al. [2003], our extended SVC

model is developed within the Bayesian setting. While the
distinction between the Bayesian and classical, or frequentist,
statistical paradigm is primarily philosophical in nature, the
Bayesian approach has become increasingly popular because
of its flexibility in specifying and fitting sophisticated, and
scientifically driven, statistical models [e.g., Wikle et al.,
1998; Berliner, 2003]. Perhaps the most appealing feature of
this approach is that inferences on unknown parameters
reflect all sources of uncertainty in the model. As a result,
our conclusions about the spatial variation in the influence of
NAO on precipitation across Greenland are accompanied by
spatially varying uncertainty values. These values reflect the
various sources of uncertainty in the model due to the
irregular spacing and differing lengths of the ice core records.
[16] Before introducing our extended Bayesian SVC

model, we briefly review Bayesian inference. In the Bayesian
paradigm, model parameters, q say, are considered to be
unknown random quantities. Statistical inference proceeds
by updating the prior distribution on the unknown parame-
ters, p(q), using the information in the observed data, Y say, as
measured by the likelihood function, L(Yjq), to yield the
posterior distribution of the parameters, p(qjY). This updating
is performed in a coherent probabilistic manner using Bayes’
Theorem:

p qjYð Þ ¼ L Y jqð Þp qð Þ
p Yð Þ :

[17] The denominator, p(Y), in the above expression is
equal to the integral of the numerator with respect to q.
Typically, this integral cannot be evaluated in closed form,
and thus simulation-based algorithms, such as those dis-
cussed in section 4, are used to approximate the posterior
distribution of the unknown parameters.
[18] Returning to our extended Bayesian SVC model, we

use the following notation:
[19] Sets/indexes

D the study region (see Figure 1);
ni number of ice core records available at location si2S;
S set of m unique ice core locations, where S � D;

Ti
max latest time when a derived annual accumulation

value is available for any of the j ice cores at location
si 2 S, i.e., Timax = max(Ti,1

max, . . ., Ti,ni
max);

Ti,j
max latest time when a derived annual accumulation value

is available for the jth ice core at location si 2 S;
Ti
min earliest time when a derived annual accumulation

value is available for any of the j ice cores at location
si 2 S, i.e., Timin = min(Ti,1

min, . . ., Ti, ni
min);

Ti,j
min earliest time when a derived annual accumulation

value is available for the jth ice core at location si2 S.

[20] Data

Ai,j,t net annual accumulation (the smoothed record
derived from annual layers identified using either
dust or d18O, or the average of both reconstructed
histories) at time t as determined by the jth ice core at
location si;

Nt value of the annual NAO index at time t.

[21] Parameters

b spatial process representing the association between
NAO and net annual accumulation;

gt space-time process representing the net annual accu-
mulation not explained by NAO;

l spatial dependence parameter of the b process;
m mean of the b process;
s2 measurement error variance;
t2 variance of the b process;
f autocorrelation parameter of the time-varying g process;
w2 innovation variance of the time-varying g process.

[22] We specify our Bayesian SVC model in a hierarchi-
cal manner, through a series of conditional distributions.
This approach allows us to build a sophisticated statistical
model by linking together various submodels. Throughout,
we use the following notation that is frequently used in
specifying Bayesian hierarchical models. For the random
quantities X1 and X2, [X1] denotes the distribution of X1,
[X1jX2] denotes the conditional distribution of X1 given X2,
and [X1, X2] denotes the joint distribution of X1 and X2.
[23] The first level of the hierarchy introduces a model for

the accumulation data over space and time. Rather than
directly specifying the joint distribution of the accumulation
data, collectively denoted by A, we model accumulation
conditionally. At this level of the model, we assume that the
spatial process b, the space-time process g, and the error
variance s2 parameters are known. Then, given these
parameters, the accumulation records are taken to be inde-
pendent across space and time. In the subsequent levels of
the hierarchy discussed below, we introduce models for b, g
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and s2, which indirectly imply a more sophisticated space-
time dependence structure for the accumulation records.
Using this conditioning approach, we assume that

AjN ;b; g; s2
� �

¼
Ym
i¼1

Yni
j¼1

YTmax
i;j

t¼Tmin
i;j

Ai;j;tjNt;b sið Þ; gt sið Þ;s2
� �

; ð1Þ

where N denotes the NAO index. Each of the distributions
on the right-hand side of (1) is assumed to be normal with
mean b(si)Nt + gt(si) and variance s2; we write

Ai;j;tjb; g; s2
� �

¼ N b sið ÞNt þ gt sið Þ;s2
� �

: ð2Þ

Together (1) and (2) determine the likelihood of the observed
net annual accumulation records.
[24] In the second stage of the hierarchy, we specify

models for b, the parameter capturing the spatial variation
between annual accumulation and NAO, and g, the param-
eter accounting for the residual spatiotemporal variation in
annual accumulation not explained by NAO. Since these
process are themselves unobserved components of the
model, these models can be thought of as prior distributions
within the Bayesian paradigm. We assume that the spatially
varying coefficient process, b, is Gaussian with a constant
mean and a spatially dependent covariance structure. The
latter assumption implies that the values of the b process at
locations that are closer together in space are more highly
correlated than the values of the process that are located
further apart. In particular, we assume that the covariance
between b(s) and b(s0), for any s, s0 2 D, follows an
exponential covariance model,

cov b sð Þ; b s0ð Þð Þ ¼ t2 exp �jjs� s0jj=lð Þ; ð3Þ

where ks � s0k denotes the Euclidean distance (in km)
between locations s and s0, t2 is the unknown variance
parameter, and l is the spatial correlation (range) parameter.
Thus, for the vector of values of the b process at the ice core
record locations, b = (b(s1), . . ., b(sm))

T,

bjm; t2;l
� �

¼ MVN m1;C t2;l
� �� �

; ð4Þ

where MVN(�, �) denotes the multivariate normal distribu-
tion and 1 represents a (m � 1) vector of ones. The scalar
parameter m captures the mean level of the b process, and
the covariance matrix, C(t2, l), is determined by (3) and
depends on the unknown spatial parameters, t2 and l.
[25] The space-time process, g, represents the residual net

annual accumulation that is not explained by NAO. We
assume a priori that this process is independent across space
and follows a first-order autoregressive (AR(1)) model at
each location s 2 D:

gt sið ÞjHt sið Þ;f;w2½ � ¼
N fgt�1 sið Þ;w2ð Þ; t ¼ Tmin

i þ 1; . . . ; Tmax
i ;

N 0;
w2

1� f2

� �
; t ¼ Tmin

i :

8>><
>>:

[26] Here, Ht(si) = {gr(si): r = Tmin
i , . . ., t � 1} denotes

the historical values of the g process at location si that
precede time t. In order to guarantee that the g process is
stationary at each location si 2 D, we restrict the autocor-
relation parameter f to be lie between �1 and 1.
[27] We complete the specification of our Bayesian hier-

archical model by assigning prior distributions for the
remaining model parameters. For most of the parameters
we use standard noninformative conjugate prior distribu-
tions: [s2] = IG(0.001, 0.001), [m] = N(0, 1000), [t2] =
IG(0.001, 0.001), [f] = U(�1, 1) and [w2] = IG(0.001,
0.001). Here, IG(a, b) denotes the inverse gamma distribu-
tion with shape parameter a and rate parameter b, andU(a, b)
denotes the continuous uniform distribution on the interval
(a, b). We assume [l] = G(5, 0.01), where G(a, b) denotes
the gamma distribution with shape parameter a and rate
parameter b. This assumption is designed to be fairly
uninformative since to the best of our knowledge there is
no relevant prior information available about the range of
plausible values for this parameter. However, the prior
distribution is not completely uninformative in the sense
that it does induce some smoothness in the b process without
being too restrictive. Finally, we note that the prior distribu-
tions for all parameters, except for [l] and [f], are condi-
tionally conjugate. This property facilitates model fitting, as
discussed in the next section.

4. Results

[28] Inferences about the unknown parameters in Bayesian
models are based on the joint posterior distribution. In our
extended Bayesian SVC model, the posterior distribution
is

fb sið Þ; si 2 Sg; fgt sið Þ; si 2 S; t ¼ Tmin
i ; . . . ;Tmax

i g;
�

s2;m; t2;l;f;w2jA;N
�
: ð5Þ

[29] Since this distribution cannot be derived in closed
form, we approximate it using a simulation-based inference
method known as Markov Chain Monte Carlo (MCMC). In
an MCMC algorithm, a Markov Chain is constructed such
that its stationary distribution is equal to the posterior
distribution of interest. See, for example, Gelman et al.
[1995] and Chen et al. [2000] for overviews of this
methodology. In our analysis, we use a specific type of
MCMC algorithm known as a Gibbs sampler in which we
iteratively sample from the full conditional distributions of
each of the unknown parameters (i.e., the distribution of an
unknown parameter conditional on the values of the other
unknown parameters and the data). The full conditional
distributions for each of the unknown parameters in our
model, except for the spatial dependence parameter l and
the autocorrelation parameter f, are available in closed
form. In order to sample from the full conditional distribu-
tions of l and f, we employ a random walk Metropolis step
within our Gibbs sampler.
[30] In an MCMC algorithm, for a sample path of the

Markov chain to constitute a random sample from the
posterior distribution, the Markov chain must converge to
its stationary distribution. As a result, the algorithm must
run for a number of ‘‘burn-in’’ iterations before generating
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posterior samples. In our model, the exact number of
‘‘burn-in’’ iterations is not known, and so we rely on
several convergence diagnostic tools. One graphical method
for assessing convergence is to look for trending in the trace
plots of the sample paths of the various model parameters.
In addition, to check that the chain was not stuck in a local
mode, the algorithm can be run with different starting values.
On the basis of these convergence diagnostics, we deter-
mined that ‘‘burn-in’’ was achieved after 5,000 iterations,
and we then ran the algorithm for an additional 10,000
iterations. Since MCMC algorithms by construction produce
dependent samples from the posterior, we store every tenth
iteration to reduce the autocorrelation in posterior samples.
After this thinning of our Markov chain, we had 1,000 nearly
independent samples from the joint posterior distribution on
which we base our inferences.
[31] Our model was fitted to all derived accumulation

records dating back to 1900 A.D. We refer to this primary
analysis as the post-1900 analysis. Given the large number of
model parameters, we present only marginal distributional
summaries of several key parameters. The third column in
Table 1 lists the sample mean of the posterior samples of the
static model parameters in the post-1900 analysis. In addi-
tion, estimated 95 percent credible intervals for each of these
parameters are included. These intervals are approximated
by the 2.5 and 97.5 percentiles of the posterior samples and
provide information about the uncertainty in our knowledge
of the parameters after observing the data. By definition, the
probability that a parameter is in a 95 percent credible
interval is 0.95, which implies that the wider the interval,
the higher the uncertainty.
[32] Since our primary interest is assessing the influence

of NAO on annual accumulation we also include posterior
summaries of the b process. Our MCMC algorithm provides
samples from the posterior of b(s), for all observed s 2 S.
[33] To further explore the spatial relationship in the

association between accumulation and NAO, we derive
posterior summaries on a fine grid {s1, . . ., sm} covering
the study region D. The posterior predictive distribution of
the b process on this grid is

p b s1ð Þ; . . . ;b smð ÞjA;Nð Þ /
Z

p b s1ð Þ; . . . ;b smð Þjm; t2;l
� �

dp m; t2;ljA;N
� �

;

where p(b(s1), . . ., b(sm)jm, t2, l) is given by (4) and p(m, t2,
t2, ljA, N) is the posterior distribution of m, t2, and l. We
take a Monte Carlo approach to evaluating this integral.

First, we draw samples from the joint posterior of m, t2, and
l. Then, conditional on these posterior samples, we draw
values of the b process at locations s1, . . ., sm from the
MVN(m1, C(t2, l)) distribution.
[34] Figure 4 provides summaries (means and standard

deviations) of the posterior distribution of the gridded b
process on a grid covering D. Figure 4 reveals that the

Table 1. Bayesian SVC Model Resultsa

Model
Component Parameter 1900– 1925–

Measurement
error

s2 0.190 (0.171, 0.211) 0.158 (0.140, 0.178)

b process m �0.18 (�0.33, 0.02) �0.18 (�0.33, 0.01)
b process l 393 (121, 804) 432 (127, 905)
b process t2 0.018 (0.001, 0.081) 0.013 (0.001, 0.049)
g process f 0.78 (0.75, 0.81) 0.77 (0.73, 0.82)

g process w2 0.230 (0.201, 0.260) 0.248 (0.219, 0.281)
aSummaries of the posterior distributions (posterior means and 95 percent

credible intervals) of the static model parameters for the extended Bayesian
SVC model fitted to records dating back to 1900 and dating back to 1925.

Figure 4. Posterior (top) mean and (bottom) standard
deviation of the b process on a grid covering the study
region defined by the black lines on Figure 1. These
inferences are based on fitting the extended Bayesian SVC
model based on net accumulation records back to 1900 A.D.
The black symbols indicate the core locations (see the
legend in Figure 1) and are in the UTM coordinate system.
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relationship between NAO and net annual accumulation is
strongest in the northwest part of D in the region surround-
ing the NASA-U, 7551, and 7653 cores (see Figure 1),
which is consistent with the conclusions of Appenzeller
et al. [1998b] and Mosley-Thompson et al. [2005]. While
the accumulation-NAO relationship is not as strong, the
b process in the region to the south of NASA-U near D2 has
a smaller posterior standard deviation (i.e., there is less
uncertainty about the strength of the relationship).
[35] To demonstrate the utility of our Bayesian approach

in synthesizing the available information about the accu-
mulation-NAO relationship, we compare our findings to a
set of comparable single-core analyses. Using the accumu-
lation records for each core separately, we fitted an
ARMA(1, 1) time series regression model of NAO on
accumulation since the ARMA(1, 1) error structure is
equivalent to an AR(1) model with measurement error.
Figure 5 compares the posterior distributions of the extended
SVC model b process to the maximum likelihood estimates
of the parameter representing the strength of the accumu-
lation-NAO relationship in the single-core analyses. For
each core, the horizontal dash denotes the posterior mean
and the vertical line represents the 95 percent credible
interval of the b process at the core’s location, while the
single-core estimates are denoted by one of three plotting
symbols corresponding to the P value for a two-sided
hypothesis test that the strength of the accumulation-NAO
relationship is significantly different from zero. Figure 5
shows that the two analyses agree more consistently for
locations with longer records from a single core or from
multiple collocated cores (the numbers in parentheses next

to the site labels are the total number of accumulation years
for all the cores at that site, and sites with an asterisk
identify locations with multiple cores). Greater discrepancies
between the inferences derived from the two approaches are
observed for sites with fewer total records, especially in
terms of the uncertainty levels. This phenomenon is partic-
ularly evident in the region to the south of NASA-U near
D2. As we noted above, the strength of the accumulation-
NAO relationship in this region is determined with a high
level of certainty so the credible intervals are narrower.
However, on the basis of the single-core analyses, the
strength of the NAO-accumulation relationship in this
region is almost never significantly different from zero at
the 0.05 level since the cores in the region are relatively
short. Thus, this comparison demonstrates the ability of the
Bayesian extended SVC model to synthesize the information
provided by the accumulation records in this region that,
taken alone, are not as informative.
[36] Given the well-documented warming of the high

northern latitudes in the 1920s, we followMosley-Thompson
et al. [2005] and also fit our model to only the accumulation
and NAO index values after 1925. The number of cores
remain the same. The column on the right of Table 1
provides summaries of the posterior distributions of the
static model parameters from this post-1925 analysis. These
summaries, in addition to maps of the posterior mean and
standard deviation of the b process (not provided for
brevity), do not reveal any major differences in the accu-
mulation-NAO relationship resulting from jointly analyzing
all post-1900 records. Since our interest is in describing the
spatial variation in the NAO influence on Greenland

Figure 5. A summary of the b process from the fitted (using all available accumulation records back to
1900 A.D.) extended SVC model at each site. For each site, the horizontal dash denotes the posterior
mean of b process, and the vertical line represents the corresponding 95 percent credible interval. The
other symbols associated with each site indicate the maximum likelihood estimates of the strength of the
accumulation-NAO relationship from individual ice core–specific ARMA(1, 1) time series regression
models; the symbol indicates whether the relationship for each core is significantly different from zero
(see section 4 for details). An asterisk next to the site label denotes sites with more than one core, and the
number in parentheses is the total number of years in all the cores from that site.
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accumulation, we do not further explore temporal variations
in the relationship. Although future work might address this
issue, the variation in the lengths of the accumulation
records could prove to be problematic.
[37] In addition, we fit our model to the post-1900 data

omitting the three core records that are based on a single
seasonally varying parameter (dust or d18O; see the dis-
cussion in section 2). Again, omitting these cores from the
analysis had very little effect on the results. As would be
expected, the posterior standard deviation increased in the
Summit region where the three cores were drilled (indicated
by a triangle on Figure 1). However, the conclusions about
the regions of Greenland where the NAO signature in the
ice core-derived accumulation is strongest, as discussed
above, do not change.

5. Discussion

[38] Our extended Bayesian SVC model provides a
framework for examining the spatial variation in the NAO
signature preserved in the Greenland ice sheet. Unlike
previous analyses, our approach allows a formal assessment
of the regional patterns in this relationship. In addition, it
readily provides uncertainty statements about the strength of
the accumulation-NAO relationship, which are shown to
vary spatially.
[39] We draw two specific conclusions on the basis of our

post-1900 analysis, which are discussed in section 4. First,
the region where the relationship between NAO and ice
core-derived accumulation is strongest is the dark area in
the northwestern section of our study region. This result is
consistent with those of Appenzeller et al. [1998b] and
Mosley-Thompson et al. [2005], who both found that the
accumulation histories from cores drilled at the NASA-U
site in this region exhibited a strong correlation (negative)
with NAO. However, our analysis reveals that the region
where the uncertainty about the relationship between NAO
and accumulation is lowest lies further to the southeast of
NASA-U (bottom plot in Figure 4).
[40] It is possible that the reduced predictability of the

accumulation-NAO relationship in the vicinity of NASA-U
results, at least in part, from the dissimilarity among the
three NASA-U records collected within a 2 km radius. The
strength of the linear relationship among the cores, taken
individually, and with NAO is variable. The Pearson corre-
lations between each ice core-derived accumulation record
and NAO are �0.524, �0.286, and �0.162 for cores 1, 2,
and 3, respectively. (Statistical significance of these corre-
lations is not provided because of the autocorrelation in the
records.) In addition, the pairwise correlations among the
individual records for their common 29-year period (1965–
1993 AD) are variable (Cores 1 and 2: 0.706; Cores 1 and 3:
0.554; Cores 2 and 3: 0.854). The differences among the
three accumulation histories are not the result of dating
errors as the average accumulation (1965–1993 AD) is
nearly identical (Cores 1, 2, and 3; 335, 331 and 323 mm
w.e., respectively). The differences are real and largely
result from surface processes that erode and redeposit
surface snow such that a thicker annual layer at one site
may be contemporaneous with a thinner layer at another
site. The two cores northwest of NASA-U (sites 7653 and
7551) also have higher posterior standard deviations, con-

sistent with NASA-U, suggesting that the weak correlations
among the NASA-U accumulation histories are not the
primary cause of higher posterior standard deviations in
that region.
[41] Although the longest record used in the study,

NASA-U (Core 1, 93 years), exhibits a strong NAO
signature in its accumulation record, the lack of consistency
in this signature among the three records for their period of
overlap implies that the accumulation-NAO relationship
may be fairly uncertain (less robust) in the region. The lack
of sufficiently long multiple cores at most sites makes
comparable assessments of ‘‘local’’ consistency (robust-
ness) difficult. It is reasonable to question whether or not
the strong relationship between net accumulation and NAO
at NASA-U (based on one longer core) is fortuitous, but the
available data are insufficient to address this question and
additional longer cores in the vicinity of NASA-U are
needed to determine whether NASA-U is truly a sensitive
location for NAO variability or whether the available record
is anomalous.
[42] Our results suggest that a more consistent accumu-

lation-derived NAO history is likely to be attained from
cores drilled southeast of NASA-U and possibly in southern
Greenland as well. A detailed investigation as to why this
may be the case is beyond the scope of this paper, but
linkages among the phase of the NAO, regional variability
in sea ice extent and cyclone frequency offer a likely
explanation. Observational evidence indicates that sea ice
variability in the Arctic is modulated by large-scale atmo-
spheric circulation patterns such as the Arctic Oscillation
and the NAO [Fang and Wallace, 1994; Rigor et al., 2002].
Further, Arctic sea ice extent is positively correlated with
sea ice extent in the Greenland and Barents Sea region (east
of Greenland) and negatively correlated with sea ice extent
in the Labrador Sea–Baffin Bay region, south and west of
Greenland creating the well known seesaw [van Loon and
Rogers, 1978; Walsh and Johnson, 1979; Wallace and
Gutzler, 1981; Fang and Wallace, 1994]. The extent and
persistence of sea ice affects the regional climate by its
influence on surface albedo and heat and moisture fluxes
between the ocean and atmosphere which in turn modulate
cyclone (storm) activity. Deser et al. [2000] used a principal
component (PC) analysis to examine the relationship
between winter sea ice concentrations and cyclone frequency
for winters with high and low Arctic sea ice concentrations.
The low minus high ice PC composite difference map
reveals that west central Greenland (just south and east of
the NASA-U region) experiences a maximum cyclone count
as does a second center of action across southern Greenland
[see Deser et al., 2000, Figure 9c]. These are the regions of
the ice sheet where our analysis yields lower posterior
standard deviations (higher predictability) of the Beta pro-
cess for the accumulation-NAO relationship. Thus this
region appears more sensitive to temporal variations in the
regional pressure distribution (NAO), sea ice extent and
storm activity (cyclone frequency) and preserves a more
consistent record of the accumulation-NAO relationship.
[43] Future efforts to use long ice core records from

Greenland to extend the NAO history will need to consider
our results carefully when selecting drill sites. Our analyses
suggest that a new ice core in the NASA-U region (along the
northwest side of Greenland) may contain an accumulation
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history that is strongly correlated with NAO variability, but
the higher levels of uncertainty here decrease the likelihood
of success. Our model also suggests that a core further
inland in the west central part of the ice sheet has a
statistically better chance of capturing a reliable record of
NAO variability.
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