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Ice cores and speleothem δ18O records from Asia have been widely used as a proxy to reconstruct 
paleoclimate changes. However, whether those δ18O records are a proxy of temperature or monsoon 
intensity has remained a great controversy. Generally, ice core δ18O records from non-monsoon and 
transition regions indicate temperature, but ice core and speleothem δ18O records from monsoon regions 
have been regarded as proxies for monsoon intensity or precipitation. Here, we address the controversy 
by showing three 20-yr long daily precipitation δ18O (δ18Op) series and 120 monthly δ18Op series based 
on 17461 precipitation samples throughout Asia. We find that the δ18Op signals preserved in precipitation 
are consistent with those in ice cores, both in the non-monsoon and monsoon regions. The results 
confirm previous research that ice core δ18O records in the non-monsoon region provide reliable histories 
of surface temperature. However, ice core δ18O records can still directly indicate surface temperature in 
the monsoon domain if winter/spring precipitation is heavy. When winter/spring precipitation is sparse, 
inverted ice core records show good agreement with surface temperature records. This may be due to 
the effect of cloud-top temperatures (which differ from surface temperatures) on summer δ18Op values. 
Similarly, inverted speleothem δ18O records in the monsoon regions are similar to Greenland/Antarctic 
ice core δ18O/δD time series and other paleotemperature records. Our findings provide a reinterpretation 
of Asian ice core and speleothem δ18O records, and demonstrate that temperature signals have been 
preserved in those archives from the Asian monsoon region.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The ratios of stable isotopes, 18O to 16O and 2H to 1H (ex-
pressed as δ18O and δD), have been defined as “fingerprints” of 
water. Hence, δ18O and δD are widely used to identify different 
moisture sources in various regions (Cobb et al., 2007), to de-
termine various components of the hydrological cycle (Birks and 
Edwards, 2009), and to reconstruct paleoclimate variations, such 
as climatic oscillations (Dansgaard et al., 1969), general instability 
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of past climate (Dansgaard et al., 1993), temperature (Jouzel et al., 
2007), and monsoon intensity (Cheng et al., 2016) variations.

In paleoclimate studies, several long ice cores have been drilled 
through the Greenland and the Antarctic ice sheets from which 
paleotemperature records have been reconstructed (Jouzel et al., 
1987; Johnsen et al., 1992; Dansgaard et al., 1993; North Green-
land Ice Core Project members, 2004), with the longest continuous 
record covering 800 kyr (Jouzel et al., 2007). Recently, an Antarc-
tic ice core record dating two million years has been reported, 
unfortunately it is only a snapshot in time and not continuous 
(Yan et al., 2019). Over the past 30 yrs several valuable ice core 
and speleothem δ18O records have been recovered from through-
out Asia in order to help reconstruct the regional paleoclimate 
(Thompson et al., 1989, 1997, 2000; Yao et al., 2007; Hou et al., 
2003; Zhao et al., 2012; Wang Y. et al., 2008; Sinha et al., 2011; 
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Fig. 1. Location of the ice core drilling sites (white dots), precipitation sampling 
stations (gray dots), and caves (black dots) in Asia. Location of the modern transition 
region between non-monsoon and monsoon regions is shown by a black dashed 
line. The numbers 1–10 in the white dots mark the locations of the ice cores listed 
in Supplementary Table 1. The numbers 1–10 in the black dots mark the locations 
of the 10 speleothems listed in Supplementary Table 2. The three gray dots marked 
with white letters (“D”, “T”, and “L”) mark the locations of the stations at Delingha, 
Tuotuohe, and Lhasa. The other 117 precipitation sampling stations are also shown 
(gray dots) (see Supplementary Table 3 for details). Arrows indicate the trajectories 
of the westerlies (brown), the Indian monsoon (dark green, via the Arabian Sea and 
the Bay of Bengal) and the East Asian monsoon (light green). (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

Cheng et al., 2016; Kathayat et al., 2017) (Fig. 1, Supplementary 
Table 1, and Supplementary Table 2). Compared with the polar re-
gions, the topographic relief and atmospheric circulation systems 
of Asia are more complex, and Asian ice core and speleothem δ18O 
records reflect influences of multiple air masses and atmospheric 
and oceanic processes. As a consequence, the use of Asian paleo-
climate δ18O records as temperature proxies has long been contro-
versial, especially in the monsoon domain. It is generally believed 
that ice core δ18O time series from the non-monsoon region and 
the transitional region between the monsoon and non-monsoon 
regions record temperature change (Thompson et al., 1989, 1997, 
2018; Yao et al., 2007; Wang et al., 2003; Tian et al., 2006; Kang et 
al., 2010), but within the monsoon domain δ18O records are often 
considered to be a monsoon intensity (precipitation amount) sig-
nal (Hou et al., 2003; Zhao et al., 2012; Yuan et al., 2004; Wang Y. 
et al., 2008; Cai et al., 2010; Sinha et al., 2011; Cheng et al., 
2016; Kathayat et al., 2017) or a temperature signal (Zhao et al., 
2017) (Supplementary Fig. 1). It is evident that the signals pre-
served in ice cores from the monsoon region are more difficult to 
interpret. For example the Noijin Kangsang ice core δ18O records 
from the Lhagoi Kangri mountains (Zhao et al., 2012) (Fig. 1) are 
inversely correlated with the Northern Hemisphere temperature 
(NHT) anomalies (Supplementary Figs. 1, 2), and the East Rong-
buk ice core δ18O records from Mt. Everest appear to record Indian 
monsoon precipitation (Hou et al., 2003). However, the Dasuopu 
ice cores from Mt. Xixiabangma (located near Mt. Everest) (Thomp-
son et al., 2000) and the Zuoqiupu ice core from the southeastern 
margin of the Himalayas (Zhao et al., 2017) are considered to 
be indicators of temperature on interannual time scales (Supple-
mentary Fig. 2). This controversy is because the factors affecting 
variations in stable isotopes in ice cores and speleothems are un-
clear.

Previous studies have emphasized that systematic variabilities, 
such as in temperature, humidity, and pressure, strongly affect 
δ18O values in precipitation (Dansgaard, 1964). Moreover, the sea-
sonal shifts of moisture sources can play a key role in the seasonal 
cycle of precipitation δ18O (Cobb et al., 2007). In addition, inten-
sified meridional and zonal circulation can modify δ18O values 
2

in precipitation (Birks and Edwards, 2009). Recent studies have 
demonstrated that precipitation δ18O can reflect proportions of 
convective and stratiform precipitation and is negatively correlated 
with stratiform fractions, especially in the tropical regions (Aggar-
wal et al., 2016). Because the signals of ice cores and speleothems 
are related to those of ancient precipitation, understanding the key 
influences that dominate precipitation δ18O variations is very im-
portant for the interpretation of these paleoclimatic records.

Here, we attempt to address the controversy mentioned above 
from the perspective of δ18O records from daily precipitation sam-
ples collected over 20 yrs at three meteorological stations located 
at Delingha, Tuotuohe, and Lhasa of the Tibetan Plateau Network 
for Isotopes in Precipitation (TNIP) (Fig. 1). To achieve this goal, 
we first prove that low-altitude δ18O values from precipitation are 
consistent with those from high-altitude ice cores, then identify 
the consistent relationship between δ18O and different meteoro-
logical parameters such as temperature, precipitation amount, and 
relatively humidity in the different regions (monsoon, transition, 
and non-monsoon regions), and finally, demonstrate that the tem-
perature signals were preserved in the δ18O records (especially 
inverted δ18O records) from Asian ice cores and speleothems.

2. Materials and methods

2.1. Observed δ18 O database

In the TNIP project, samples from each precipitation event were 
collected immediately after the event from a rain gauge. Rainfall 
samples were collected immediately after each event from a rain 
gauge with a collection funnel. Note a plastic table tennis ball was 
placed in the collection funnel to seal the collector bottle against 
evaporation and debris. The samples were transferred into 15 mL 
plastic bottles, sealed with screw caps, and wrapped with parafilm 
to prevent sample loss and evaporation prior to analysis. Solid pre-
cipitation samples were collected on clean porcelain plates, put 
into clean plastic bags, and sealed. The solid samples were pro-
cessed using the same methodology as rainfall samples after they 
melted at room temperature. All samples were stored below freez-
ing until being analyzed. Additionally, the duration of each precip-
itation event, surface temperature (T), relative humidity (RH), and 
precipitation amount (P) were recorded as samples were collected 
(Yu et al., 2017). In this study, we collected and measured 11095 
precipitation event samples from 21 stations, including the three 
20-yr long observation stations of Lhasa, Tuotuohe, and Delingha 
(1540, 1869, and 2040 samples, respectively) (Supplementary Ta-
ble 3).

Precipitation samples collected prior to 2004 were analyzed 
at the State Key Laboratory of Cryosphere (Lanzhou), Chinese 
Academy of Sciences, using a MAT-252 mass spectrometer with 
a precision of ±0.2� for δ18O values. Precipitation samples col-
lected in 2005–2008 and in 2009–2014 were measured at the Key 
Laboratory of Tibetan Environmental Changes and Land Surface 
Processes (Beijing), Chinese Academy of Sciences, using a MAT-253 
mass spectrometer and a Picarro-L2130i Cavity Ring-down Spec-
troscopy with precisions of ±0.1� and ±0.1� for δ18O values, 
respectively (Yao et al., 2013). All the data of the measured pre-
cipitation are expressed as parts per thousand of their deviation 
relative to the Vienna Standard Mean Ocean Water (VSMOW or VS-
MOW2). The detailed sampling and measurement procedures were 
published by Yao et al. (2013).

We also selected some monthly precipitation δ18O data from 
69 observation stations of the International Atomic Energy Agency/
World Meteorological Organization (IAEA/WMO) Global Network of 
Isotopes in Precipitation (GNIP) (available at https://www.iaea .org /
services /networks /gnip). Similar to the TNIP, rainfall samples were 
collected from a rain gauge. Large collection bottles were needed 
to collect monthly samples. The rain gauge was read and emptied 

https://www.iaea.org/services/networks/gnip
https://www.iaea.org/services/networks/gnip


W. Yu, T. Yao, L.G. Thompson et al. Earth and Planetary Science Letters 554 (2021) 116665
as soon as possible in the morning following each precipitation 
event. After reading and recording the volume, the collected water 
was poured into the accumulation bottle, which was tightly sealed 
and stored in a refrigerator. The samples were analyzed mainly in 
the IAEA’s Isotope Hydrology Laboratory in Vienna, but were also 
measured in cooperating laboratories. The measurements reported 
in GNIP have a long term precision of about ±0.1� for δ18O values 
at one standard deviation (IAEA/WMO, 2018). In addition, some 
precipitation δ18O data at 30 observation stations collected by pre-
vious studies (Liu et al., 2007; Pang et al., 2011; Duan et al., 2016; 
Li Z. et al., 2016; Guo et al., 2017; Wang et al., 2016) were used. 
The data from the 120 stations present a good representation of 
precipitation δ18O (δ18Op) changes in the non-monsoon, transi-
tion, and monsoon regions (Yao et al., 2013) (Fig. 1, Supplementary 
Fig. 3, Supplementary Table 3).

2.2. Retrieved δ18O database

In addition to the observed precipitation δ18O dataset, we 
also used water vapor isotopic data (δD) derived from Tropo-
spheric Emission Spectrometer (TES). The TES instrument is a 
Fourier transform spectrometer onboard the National Aeronau-
tics and Space Administration (NASA) Aura satellite, which was 
launched in 2004 and ended surveillance in 2018. It captured the 
global vertical profiles of water vapor and its isotopes by mea-
suring radiances in the range of 1200–1350 cm−1 at a spectral 
resolution of 0.1 cm−1 (Worden et al., 2011). The detailed re-
trieval procedures have been described elsewhere (Worden et al., 
2011). The water vapor δD data were provided by NASA Lang-
ley Research Center Atmospheric Science Data Center (available 
at https://tes .jpl .nasa .gov /data). We used the retrieved H2O and 
HDO of version 6 Lite level 2 H2O and HDO nadir retrievals from 
three stations (Lhasa, Tuotuohe and Delingha) and a region cover-
ing 10◦N to 25◦N and 65◦E to 130◦E during 2006–2009 because 
of good measuring continuities. To ensure data quality, we omit-
ted data whose species retrieval quality was 0 and the degrees of 
freedom for signals were less than 0.5. To better compare with the 
observed precipitation δ18O data, the δD data were used to calcu-
late δ18O using the equation δD = 8.0δ18O + 10 (Craig, 1961).

2.3. Simulated δ18O database

In this study, the simulations of the δ18O database including 
the stable oxygen isotopic ratios in water vapor (δ18Ov) at 500 
hPa and the δ18Op were performed by the ECHAM5-wiso model 
(Mutz et al., 2016). The ECHAM5-wiso is an atmospheric general 
circulation model enhanced by stable water isotope diagnostics 
(Werner et al., 2011). The model is run for modern conditions with 
a horizontal spatial resolution of 1.8◦ × 1.8◦ and 19 vertical lev-
els (up to 10 hPa). Subgrid scale orography parameterization has 
been implemented in ECHAM5-wiso to better quantitatively under-
stand the local climatic and topographic controls on precipitation 
δ18O (Mutz et al., 2016). Recent studies have demonstrated that 
the simulation with ECHAM5-wiso on the Tibetan Plateau captures 
the corresponding observations very well (Li J. et al., 2016). The 
detailed ECHAM5-wiso simulation procedures have been described 
elsewhere (Werner et al., 2011; Mutz et al., 2016). The standard 
climatological reference period (1979–1999) modeling outputs are 
used in this study.

2.4. Meteorological and other related data

During the precipitation sampling, we recorded the duration 
of each precipitation event, surface temperature, relative humid-
ity, and precipitation amount. To compare the seasonal variations 
3

and annual trends of precipitation amounts at the three sam-
pling stations with those at the ice core drilling sites, we used 
the precipitation data observed by the Tropical Rainfall Measuring 
Mission (TRMM) (available at: https://pmm .nasa .gov /data -access /
downloads /trmm). In addition, in order to discuss the relation-
ships between cloud-top temperature (CTT) and the precipitation 
δ18O, we used the International Satellite Cloud Climatology Project 
(ISCCP) D1 and D2 products (cloud-top temperature), which were 
obtained from NASA Goddard Institute for Space Studies (available 
at: https://eosweb .larc .nasa .gov /project /isccp /isccp _table).

2.5. The iLOVECLIM Earth system model

As a three-dimensional Earth system model, the LOch-Vecode-
Ecbilt-CLio-agIsM (LOVECLIM) model has a simpler representa-
tion of physical processes, although its resolution is coarser than 
state-of-the-art climate General Circulation Models (GCMs). Hence, 
LOVECLIM is much faster than GCMs (Goosse et al., 2010). The 
iLOVECLIM model is a code fork of the LOVECLIM-1.2 climate 
model, with the atmosphere, ocean, sea ice and vegetation com-
ponents interactively coupled (Roche, 2013).

In our study, the annual mean atmospheric temperature and 
annual mean precipitation δ18O data over the regions (∼17◦–33◦N 
and 87◦–116◦E) during the past 150,000 yrs, simulated by the 
iLOVECLIM1.2 model, were obtained from Caley et al. (2014). The 
orbital configuration is calculated from Berger (1978) with con-
stant year 1950. The run is performed using present day land-sea 
mask, freshwater routing and interactive vegetation (Roche, 2013). 
The temperature is driven by both natural (insolation) and anthro-
pogenic (greenhouse gas) forcings (Yin and Berger, 2010). With 
regards to the precipitation δ18O data, the main development lies 
in the atmospheric component in which evaporation, condensation 
and existence of different phases (liquid and solid) all affect the 
isotopic conditions of the precipitation δ18O data (Roche, 2013). 
The precipitation δ18O data were corrected from the ice-sheet con-
tribution to the global seawater δ18O data over the last 150,000 yrs
(Caley et al., 2014).

2.6. Statistical analysis

All statistical analyses were performed on IBM SPSS Statistics 
version 19.0 (IBM Corp. Armonk, NY, USA). Least squares linear re-
gression was used to determine if there was a linear correlation 
between independent variables and dependent variables. Relation-
ships between variables were assessed using standard bivariate 
procedures. A value of p < 0.05 is considered significant.

3. Results

3.1. Two hypotheses were tested

Before the controversy can be resolved, it is first necessary to 
prove that low-altitude δ18Op values are consistent with those 
from high-altitude ice cores. Here we proposed two hypotheses: 
i) the signal consistency (i.e., the temporal trends in ice core δ18O 
records at high altitude should be similar to those in δ18Op records 
at low altitude); and ii) the consistency of precipitation amount 
patterns (i.e., the seasonal variations and annual trends of precip-
itation amounts at the three sampling stations should be similar 
to those at the ice core drilling sites). To test the first hypothe-
sis, we compared the δ18O records from the three precipitation 
sampling stations of Delingha, Tuotuohe, and Lhasa with those 
from the adjacent three ice cores (from north to south, they were 
Dunde, Puruogangri, and Noijin Kangsang ice cores, the distances 
between the ice core drilling sites and adjacent sampling stations 
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Fig. 2. Comparisons of δ18O records from four ice cores (solid blue lines) and nearby 
precipitation sampling stations (dashed green lines). The blue and green lines indi-
cate δ18O records in ice cores of Dunde (Takeuchi et al., 2009), Puruogangri (Yao 
et al., 2007), and Noijin Kangsang (Zhao et al., 2012) and precipitation of Delingha, 
Tuotuohe, and Lhasa, which represent, in order, the non-monsoon, transition and 
monsoon regions, respectively. Note that (a), (c), and (e) show the raw data, and ice 
core δ18O records were moved one year backward in (b), (d), and (f). In addition, in 
the monsoon region, the δ18O changes in Dasuopu ice core (Thompson et al., 2000; 
Wang P. et al., 2008) and Nyalam precipitation are also shown (g). Their similar 
changes indicate no dating error for the Dasuopu ice core records. The station/ice 
core elevations are also shown in brackets. δ18O is reported as per mil deviations 
from VSMOW or VSMOW2.

are 116.3 km, 311.5 km, 111.7 km in order). In addition, it is im-
portant to note that the absolute values of the δ18Op records and 
ice core δ18O records are different due to the elevation and pre-
cipitation phase differences. If we exclude the influence of the ice 
core dating error by moving one year backward for the ice core 
δ18O record, the trends of the three-site δ18Op records will be 
similar as those of the adjacent ice core δ18O records (Fig. 2a-2f). 
The adjusted δ18O records in the Puruogangri (Yao et al., 2007) 
(Fig. 2d) and Noijin Kangsang (Zhao et al., 2012) (Fig. 2f) ice cores, 
and the raw δ18O data in the Dasuopu ice core (Fig. 2g) are pos-
itively correlated with those in precipitation, with a sample size 
(n) of 9, 14, and 9, a correlation coefficient (r) of 0.93, 0.60, and 
0.76, within a 0.01, 0.05, and 0.05 confidence level (p), respec-
tively. Note the positive relationship between the adjusted δ18O 
record in the Dunde ice core (Takeuchi et al., 2009) and δ18O in 
the Delingha precipitation (Fig. 2b) is weak (r = 0.2) due to the un-
completed precipitation sampling in 1995. This indicates that the 
signals of the low-altitude δ18Op records are consistent with those 
captured by the high-altitude ice core δ18O records, and the low-
altitude δ18Op records can represent the adjacent high-altitude ice 
core δ18O records. The same is true for the low-altitude δ18Op
records at Nyalam, located on the south slope of the Himalayas and 
the nearby Dasuopu ice core δ18O record (Thompson et al., 2000; 
Wang P. et al., 2008) (the distance between the ice core-station 
is 35.6 km) (Fig. 2g). Note that the result of δ18Op at Delingha 
in 1995 was not consistent with the corresponding Dunde ice core 
records, possibly because some of the precipitation samples at Del-
ingha in that year were not obtained.
4

To verify the consistency of mass changes, we compared the 
precipitation amounts from the three sampling stations (Delingha, 
Tuotuohe, and Lhasa) to those from the corresponding adjacent 
ice core drilling sites (Dunde, Puruogangri, and Noijin Kangsang 
ice cores). It was expected that the overall trend of precipitation 
amount between the low-altitude stations and the high-altitude 
drilling sites would be similar, whether on monthly or annual 
time scales. First, we compared the precipitation amounts observed 
at the sampling stations (Pstation) with those observed by Tropi-
cal Rainfall Measuring Mission (TRMM) at the sampling stations 
(PTRMM). The results showed that at the low-altitude sampling 
stations, the trends of the TRMM and surface observations were 
highly similar, whether for the monthly changes (with a correla-
tion coefficient of 0.51–0.89, within a 0.05 and 0.01 confidence 
level) (Supplementary Fig. 4, Supplementary Table 5) or for the 
annual changes (with a correlation coefficient of 0.80–0.97, within 
a 0.01 confidence level) (Supplementary Fig. 5, Supplementary Ta-
ble 6). Thus, we believe that the TRMM results can capture the 
monthly and annual patterns of precipitation in Asia. Second, we 
compared the TRMM precipitation records at the sampling stations 
with those at the corresponding adjacent ice core drilling sites. 
On the whole, whether considering the monthly patterns (Supple-
mentary Fig. 4) or the annual changes (Supplementary Fig. 5), the 
fluctuations of precipitation amounts at low-altitude TRMM were 
similar to those at the corresponding adjacent ice core drilling 
sites. Therefore, we believe that the change in trends of precipi-
tation amount at low altitude can indicate those at the adjacent 
high altitude.

The consistencies between the temporal variations of the δ18O 
records and precipitation amounts at low and high altitudes 
demonstrate that the low-altitude δ18Op time series can record the 
corresponding adjacent ice core δ18O signals at high altitude. This 
results from the fact that water isotope fractionation at different 
altitudes is subject to the same isotope fractionation mechanism. 
As an air mass follows a trajectory from its vapor source region to 
higher latitudes, it cools and loses its water vapor along the way 
as precipitation, a process called ‘rainout’ (Dansgaard, 1964; Clark 
and Fritz, 1997), which can be expressed by the Rayleigh distilla-
tion:

R = R0 f (α−1)

where R0 and R are the initial isotope ratio of the vapor and the 
isotope ratio after rainout, respectively. The quantity f is the resid-
ual fraction of vapor in the air mass, and α is the equilibrium 
isotopic fractionation factor between vapor and liquid water at the 
in-cloud temperature. For δ18O, lnα = 1.137/(T +273.16)2 ×103 −
0.4156/(T +273.16) −2.0667 ×10−3) (Majoube, 1971). It is appar-
ent that temperature is the primary driver of rainout. Hence, the 
δ18O values of rain or snow are mainly related to the condensa-
tion temperature (Dansgaard, 1964). Both rain and snow is subject 
to Rayleigh distillation with slightly different isotopic fractionation 
factors.

3.2. Consistent relationships between δ18Op and temperature

If δ18Op can be considered as a good indicator of temperature, 
humidity, or precipitation amount within each region, it should 
meet the criterion of a significant relationship between the isotopic 
values and these parameters across different time scales (daily, 
monthly, annual). If the relationships between the isotopic values 
and any parameter across different time scales in any region can 
not maintain consistent positive or inverse correlations, they do 
not meet this criterion. Our findings show that the δ18Op values 
are positively correlated with surface temperature (i.e., tempera-
ture effect) in the non-monsoon and transition regions on different 



W. Yu, T. Yao, L.G. Thompson et al. Earth and Planetary Science Letters 554 (2021) 116665
Fig. 3. The relationships δ18Op–T, δ18Op–RH, and δ18Op–P at Delingha (a, d, and 
g), Tuotuohe (b, e, and h) and Lhasa (c, f, and i) on the different time scales in 
1991–2014. The gray, green, and pink legends indicate the relationships on the 
daily, monthly and annual time scales, respectively. On the different time scales, 
the correlation δ18Op–T is consistent in each region (the positive correlation is con-
sistent in the non-monsoon and transition regions, and the inverse correlation is 
consistent in the monsoon region), but the relationships δ18Op–RH and δ18Op–P 
are not consistent in either the non-monsoon or transition region (see Supplemen-
tary Table 4 for details). δ18O is reported as per mil deviations from VSMOW or 
VSMOW2.

time scales, with a correlation coefficient of 0.11–0.80, within a 
0.05 or 0.01 confidence level (Note the positive correlation for the 
Tuotuohe station on annual time scale is weak, it may be because 
the sample number is very small). In the monsoon region a con-
sistent but inverse correlation between δ18Op values and surface 
temperature exists on different time scales (defined as “inverse 
temperature effect” in this text), with a correlation coefficient of 
−0.16–−0.22, within a 0.01 confidence level (Note the inverse cor-
relation for the Lhasa station on annual time scale is also weak, 
it may be because the sample number is as small as 22) (Fig. 3, 
Supplementary Table 4). Thus, we argue that although δ18Op mea-
surements and ice core δ18O records from the non-monsoon and 
transition regions can directly reflect temperature, they can “in-
versely” reflect the temperature in the monsoon region. However, 
there is not a consistent relationship between δ18Op and precipi-
tation amount (or humidity) within or between the regions (Fig. 3, 
Supplementary Table 4). Note that although the δ18O in the mon-
soon region is significantly and positively correlated with precipi-
tation amount on daily and monthly time scales, the δ18O – P an-
nual time scale correlation in the monsoon region is not significant 
(Fig. 3, Supplementary Table 4). Similarly, although there is a con-
sistent relationship between δ18O and RH in the monsoon region, 
the δ18O – RH correlations in the transition and non-monsoon re-
gions on different time scales are not consistent. Hence, there is a 
degree of uncertainty over whether δ18O in either precipitation or 
ice cores or other sediment archives (such as speleothems) can be 
used as a proxy for precipitation amounts or relative humidity.
5

4. Discussion

4.1. Temperature signals preserved in Asian ice cores

The positive correlations are significant between surface tem-
perature and 10 representative ice core δ18O records (Supplemen-
tary Fig. 1) in the non-monsoon and transition regions (with a cor-
relation coefficient of 0.16–0.78, within a 0.05 or 0.01 confidence 
level); however, correlations in the monsoon region are not consis-
tent. Significant positive correlations occur for Dasuopu (Thompson 
et al., 2000) and Zuoqiupu (Zhao et al., 2017) ice cores, while there 
is a significant negative correlation between temperature and the 
Noijin Kangsang ice core (with a correlation coefficient of −0.24, 
within a 0.01 confidence level) (Zhao et al., 2012). The correlation 
with the East Rongbuk ice core is not significant; however, the neg-
ative correlations between the 5-yr running means of δ18O values 
from the East Rongbuk ice core and the NHT during 1850-1898 and 
1899-1997 are significant, with a correlation coefficient of −0.51 
and −0.23, within a 0.05 and 0.01 confidence level, respectively 
(Hou et al., 2003) (Supplementary Fig. 2, Supplementary Table 1). 
Because the strong Asian summer monsoon and convection results 
in relatively low δ18Op values in summer (Yu et al., 2017), the 
trends of low summer δ18Op values (Fig. 4g) are opposite to those 
of surface temperatures (Fig. 4c), although the pre-monsoon δ18Op
values and surface temperatures gradually increase synchronously 
(Fig. 4g, 4c). Therefore, in the monsoon region it is necessary to 
consider two cases involving either heavy or sparse precipitation 
in winter/spring (Supplementary Fig. 6). When the precipitation 
in winter/spring is heavy, temperature and δ18O are more closely 
linked both in precipitation and in the ice core records. For ex-
ample, the meteorological stations at Purang and Nyalam record 
heavy winter/spring precipitation (Supplementary Fig. 6A) due to 
the favorable local topographic conditions that interact with the 
western disturbances (Pang et al., 2014). Hence, the nearby Da-
suopu ice core δ18O record may be used as a proxy for temperature 
(Thompson et al., 1997). Another good example is the Zuoqiupu ice 
core (Zhao et al., 2017), which is located in the monsoon region 
and is also characterized by heavy winter/spring precipitation as 
shown by the precipitation records from Bomi and Zayu (Supple-
mentary Fig. 6D). Moreover, the positive correlation between δ18Op
values and surface temperature before the onset of the monsoon in 
this region (Yu et al., 2016) supports the conclusion that the tem-
perature signal is preserved in the nearby Zuoqiupu ice core (Zhao 
et al., 2017).

In regions where the winter/spring precipitation is sparse, 
glaciers receive proportionately more snow in the summer and 
thus show more of an “inverse” temperature signal that results 
from the negative correlation between summer δ18Op values and 
surface temperature (Fig. 4c, 4g). The precipitation at the meteoro-
logical stations at Lhasa and Nagarze, near the Noijin Kangsang ice 
core site, falls mainly in summer (Supplementary Fig. 6C), which 
results in a negative correlation between the Noijin Kangsang ice 
core δ18O record (Zhao et al., 2012) and the NHT anomalies back 
to 1850 (Supplementary Fig. 2). This is also observed for the cor-
relation between the East Rongbuk δ18O record (Hou et al., 2003) 
from a glacier that also receives less winter/spring than summer 
precipitation as indicated by the Tingri and Pagri meteorological 
stations (Supplementary Fig. 6B).

Since these ice core δ18O records in the monsoon region with 
sparse winter/spring precipitation are inversely correlated with the 
NHT anomalies (Supplementary Fig. 2), we inverted their time se-
ries and compared them with the relevant instrumental records 
(Supplementary Fig. 7). The results are mixed. On the one hand, 
the inverted whole East Rongbuk record (Hou et al., 2003) and the 
new Noijin Kangsang record (Zhao et al., 2012) (moved one year 
backward and then inverted) before 1989 are similar to the NHT 
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Fig. 4. Seasonal changes in surface temperature (ST, pink) and δ18Op (blue) at Delingha (a, e), Tuotuohe (b, f), and Lhasa (c, g), from 1991–2014, and the moisture source 
area (10◦–25◦N and 65◦–130◦E) (d, h) from 1961-2016. Seasonal changes in the cloud-top temperature (CTT, yellow) and δ18Ov (green) over Delingha (i, m), Tuotuohe (j, 
n), and Lhasa (k, o) in the target area and the moisture source area (l, p) from 2006–2009. The shading in each panel indicates standard deviation. The red arrows mark the 
relatively low values in the summer. STs at the three stations were derived from instrumental data, but surface temperatures (including sea surface temperatures) over the 
moisture source area are from NCEP reanalysis-derived data. Note that the δ18Ov variations of near surface water vapor over the moisture source area (p, light green line) 
are very slight. δ18O is reported as per mil deviations from VSMOW or VSMOW2.
since 1850. The 5-yr running δ18O record of East Rongbuk ice core 
is negatively correlated with the NHT over the periods of 1850-
1898 and 1899-1997, with a correlation coefficient of −0.51 and 
−0.23, with a confidence level of 0.01 and 0.05, respectively. The 
new Noijin Kangsang record before 1989 is significantly correlated 
with the NHT, with a correlation coefficient of −0.27 and a 0.01 
confidence level. However, part of the new the Noijin Kangsang 
ice core δ18O record after 1989 was still abnormal (marked by 
a green box). The reason for the discrepancy remains unclear. It 
may be related to the abnormal local circulation (Gao et al., 2016), 
but further study is required to determine why the trend seems 
to reverse in the most recent part of the record. Interestingly, the 
higher frequency fluctuations of the inverted δ18O record from the 
Noijin Kangsang ice core over the period 1993-2004 are still sim-
ilar to those of the NHT, with a correlation coefficient of −0.80, 
within a 0.05 confidence level (Supplementary Fig. 8). Hence, we 
argue that the ice core δ18O records in the monsoon region with 
sparse winter/spring precipitation can “inversely” indicate the sur-
face temperature changes.

4.2. Temperature signals preserved in Asian speleothems

The assumption that the speleothem δ18O records (δ18Os) can 
be used as a paleoclimate proxy requires that the speleothem δ18O 
records inherit the signals of δ18O in precipitation (δ18Op) outside 
the caves. Therefore, we can determine that the speleothem δ18O 
records indicate temperature (or precipitation), if the precipitation 
δ18O records outside the caves capture the temperature (or precip-
itation) signal. In Section 3.2, we have already demonstrated that 
there is not a consistent relationship between δ18Op and precipita-
tion amount within or between the regions of the monsoon, tran-
sitional, and non-monsoon regions. The result suggests speleothem 
δ18O records do not consistently reflect changes in precipitation 
amount. Previous studies also argued that speleothem δ18O records 
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in East Asia can not indicate the changes in annual precipitation 
(or summer precipitation) based on the relationship between pre-
cipitation amount and speleothem δ18O records on annual, decadal 
and orbital time scales (Chen et al., 2016; Rao et al., 2016; Liu 
et al., 2020). In this study, we found precipitation δ18O records 
outside the caves in the Asian monsoon region are negatively cor-
related with surface temperature. Hence, the inverted speleothem 
δ18O records from the Asian monsoon region may also indicate 
temperature.

To demonstrate this conclusion, we firstly compared the in-
verted speleothem δ18O curves of Jhumar-Wah caves in the South 
Asian monsoon region (Sinha et al., 2011), and of Zhijin (Kuo et 
al., 2011), Dongge (Cheng et al., 2016), and Dayu (Tan et al., 2009) 
caves in the East Asian monsoon region with sparse winter/spring 
precipitation with the NHT curve during 1850–2010 (Supplemen-
tary Fig. 9). The results show that the composite δ18Os record 
from Jhumar and Wah Shikar caves is significantly correlated with 
the NHT over the periods of 1850–2007, with a correlation coef-
ficient of −0.40, within a 0.01 confidence level. The speleothem 
δ18O record from Zhijin cave is negatively correlated with the NHT 
over the periods of 1850–1942 and 1943–1997, with a correla-
tion coefficient of −0.43 and −0.3, within a 0.01 and 0.05 con-
fidence level, respectively. For Dongge and Dayu caves, the trends 
of the inverted speleothem δ18O curves are very similar to those 
of the NHT curve, with a correlation coefficient of −0.48 and 
−0.24, within a 0.05 and 0.05 confidence level, respectively, ex-
cept part of the speleothem δ18O records from Dongge cave after 
1954 and from Dayu cave after 1976 are still abnormal (marked 
by a green box). The results indicate that the inverted speleothem 
δ18O records from the Asian monsoon region may reflect changes 
in surface temperature.

During the last 2000 yrs, we also found that the inverted 
speleothem δ18O record from Sahiya cave (Kathayat et al., 2017) 
and the composite δ18O record from Jhumar and Wah Shikar caves 
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(Sinha et al., 2011) from the South Asian monsoon region, agree 
with the Northern Hemisphere and Northern Hemisphere extrat-
ropical temperature anomalies (Moberg et al., 2005; Christiansen 
and Ljungqvist, 2012), with a correlation coefficient of −0.22 and 
−0.15, within a 0.01 and 0.01 confidence level, respectively (Sup-
plementary Fig. 10) (Note these r values are lower than the cor-
relation observed from Jhumar-Wah, Zhijin, and Dongge Caves). 
In the East Asian monsoon region, during the last 2000 yrs, the 
trends of the inverted speleothem δ18O record from Lianhua (Cos-
ford et al., 2009) and Heshang (Hu et al., 2008) caves are also 
similar to those of the NHT (Supplementary Fig. 11). The Hes-
hang speleothem δ18O record is negatively correlated with the 
NHT during 0-1980, with a correlation coefficient of −0.10, and 
a confidence level of 0.01. The negative relationship between the 
Lianhua speleothem δ18O record and the NHT during 0-1997 is 
also significant, with a correlation coefficient of −0.14, within a 
0.05 confidence level. Clearly, those r values are close to zero in-
dicating that the relationships only account for a small amount of 
the variance. We do not rule out that the Asian summer monsoon 
(ASM) intensity can be contributing to the variance. It is neces-
sary to discuss the relationships between the ASM intensity and 
speleothem δ18O records in our future studies.

In addition, we extrapolated further our findings over the 
longer timescales. One example is in the East Asian monsoon re-
gion, we found that an inverted speleothem δ18O record (Hulu, 
Dongge and Sanbao caves) (Cheng et al., 2016) is similar to sur-
face temperature over the region in which the caves are lo-
cated (∼17◦–33◦N and 87◦–116◦E) as simulated by the iLOVECLIM 
model during periods of 8-73 and 124-150 kyr BP, with a cor-
relation coefficient of −0.69 and −0.70, within a 0.01 and 0.01 
confidence level (Caley et al., 2014) (Supplementary Fig. 12). Those 
results indicate that the inverted speleothem δ18O records from 
the Asian monsoon region can capture temperature signal. Note 
there are still some periods where the temperature to δ18O records 
do not agree (Supplementary Figs. 10 and 12). It may be because 
the precipitation patterns during those periods do not conform 
with the above assumption that the speleothems receive heavy 
summer precipitation and sparse winter/spring precipitation.

As mentioned in Cheng et al. (2019), before the data process-
ing and comparison of the Asian monsoon (Chinese speleothem 
δ18O) and Antarctic temperature (ice core δD) records, it was dif-
ficult to imagine that there exists a close internal relationship 
between the Antarctic temperature and Chinese speleothem δ18O 
records, because the two records are so distant. The relationship 
can be described as: δ18OChinese speleothem − InsolationJuly 21–65◦N ≈
�δDAntarctica ≈ δDAntarctica − δ18Obenthic. This indicates that there 
is a “simple” relationship between climate changes in the high 
latitude region of the Southern Hemisphere and the mid-low lat-
itude monsoon region of the Northern Hemisphere (Cheng et al., 
2019). Thus, it is in fact possible to compare Asian speleothem 
δ18O records to both Greenland and Antarctic ice core records.

It is widely accepted that ice core δ18O records from Green-
land and the Antarctic can be used as proxies of temperature. 
Hence, we directly compared the speleothem δ18O records from 
the Asian monsoon region with those ice core δ18O records in 
order to reveal the signal of the speleothem δ18O records. Here, 
we compared the inverted speleothem δ18O record (Hulu, Dongge 
and Sanbao caves) from the Asian monsoon region (Cheng et al., 
2016) with the Greenland NGRIP δ18O and the Antarctic EDC3 δD 
ice core records (North Greenland Ice Core Project members, 2004; 
Jouzel et al., 2007) during some periods. The results show that the 
inverted speleothem δ18O composite record from the East Asian 
monsoon region, which receives sparse winter/spring precipitation, 
is similar to the Greenland NGRIP δ18O and the Antarctic EDC3 
δD ice core records from 0 to 130 kyr BP (Supplementary Fig. 13). 
Note the inverted curve of millennial mean δ18Os records are cor-
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related with the Antarctic EDC3 ice core δD records during periods 
of 0-130 kyr BP, with a correlation coefficient of −0.22, within a 
0.05 confidence level; the inverted curve of centurial mean δ18Os
records are correlated with Greenland NGRIP δ18O records during 
periods of 0-130 kyr BP (Yuan et al., 2004), with a correlation co-
efficient of −0.35, within a 0.01 confidence level. Moreover, the 
variations in the inverted speleothem δ18O record (Cheng et al., 
2016) are highly similar to those in the Antarctic EDC3 δD record 
(Jouzel et al., 2007) during 240 to 334, 343 to 386, 394 to 462, and 
603 to 640 kyr BP, with a correlation coefficient of −0.30, −0.65, 
−0.38, and −0.63, within a 0.05, 0.01, 0.05, and 0.05 confidence 
level (Supplementary Fig. 14). The results show that our reinter-
pretation of ice core δ18O records in the monsoon domain can be 
applied to speleothem δ18O records from the Asian monsoon re-
gion (Wang Y. et al., 2008; Sinha et al., 2011; Cheng et al., 2016; 
Kathayat et al., 2017; Yuan et al., 2004). Hence, we argued that 
the inverted speleothem δ18O records from the Asian monsoon re-
gion can also reflect temperature on the centennial as well as the 
orbital time scales.

4.3. Implications of inverted δ18O records

How can the inverted ice core and speleothem δ18O records 
from the Asian monsoon region indicate surface temperature 
changes? First, it should be noted that it is the in-cloud temper-
atures (or condensation temperatures) that control condensation 
and isotope fractionation. These cannot be routinely measured, 
and so correlation with surface air temperatures are made in many 
studies (Clark and Fritz, 1997). This can be done since the trends of 
surface temperatures in most regions are similar to those of the in-
cloud temperatures. In this study, in the tropical regions, intense 
summer monsoon onset involves the abrupt increase of convec-
tion (Risi et al., 2008). This involves the uplift of warm and humid 
marine moisture from the tropical ocean to the high troposphere 
where the relatively low summer cloud-top temperatures (Fig. 4l) 
(Cai and Tian, 2016) produce an enhanced Rayleigh fractionation, 
resulting in low water vapor δ18O (δ18Ov) (Fig. 4p, and Fig. 5) val-
ues and subsequently low δ18Op values in monsoon precipitation 
(Fig. 4h) despite the high summer surface temperatures (Fig. 4d, 
and Fig. 5). The residual moisture is transported to higher latitudes 
by the summer monsoon circulation, and the uplift of the subse-
quent convection over the mountains causes the δ18Ov values of 
the residual moisture to decrease further (Fig. 4o). The subsequent 
precipitation is also characterized by lower δ18Op values (Fig. 4g) 
(Yao et al., 2013; Yu et al., 2017). In addition, we find that the 
summer cloud-top temperatures over the region where uplifted 
precipitation occurs is also relatively low, such as in Lhasa (Fig. 4k), 
which also contributes to the lower δ18O values in the rain pro-
duced by the residual moisture (Fig. 4o; Fig. 5). Thus, the relatively 
lower δ18O values of summer precipitation in the monsoon region 
are controlled by the cloud-top temperatures, or strictly speaking, 
they are controlled by the in-cloud (condensation) temperatures, 
which is a key parameter of the Rayleigh fractionation equation. 
That the corresponding surface temperatures in summer are high 
(Fig. 4c, 4d) and thus inversely correlated with precipitation δ18O 
in the monsoon region (Fig. 4g, 4h) are a secondary considera-
tion. We further find that the cloud-top temperatures over Lhasa 
(Fig. 4k), Tuotuohe (Fig. 4j), and Delingha (Fig. 4i) in summer grad-
ually increase as the moisture moves from the monsoon region to 
the non-monsoon region, which results in the summer water va-
por δ18Ov values increasing from south to north (Fig. 4g, 4f, 4e; 
Fig. 5). In addition, the monsoon circulation gradually weakens 
from south to north, where the westerlies and local moisture re-
cycling gradually strengthen. The result is that the magnitude of 
the decrease in summer precipitation δ18O values from the mon-
soon region to the non-monsoon region becomes smaller (Fig. 5). 
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Fig. 5. Scheme illustrating how moisture is transported by the Asian monsoon (green arrow). Convection (dashed line with arrow), cloud-top temperature (CTT, yellow dot), 
water vapor δv (green dot), and surface temperature (ST, pink dot) all affect summer δ18Op (blue dot) from the ocean/coastal regions (moisture source area) to the Asian 
continent (target area). Note the minus (plus) signs within the circles that indicate decreased (increased) summer values, and the sizes of the circles show the magnitudes 
of those decreases (increases). The sizes of the green arrows and dashed lines indicate the relative strengths of the monsoon and convection.

Fig. 6. North-south long-term mean simulated δ18Ov (a, b) and δ18Op (d, e) profiles during 1979-1999 for May (pre-monsoon season) (a, d) and July (monsoon season) (b, e). 
Shadings show the topography cross-section profiles of the Tibetan Plateau (c, f). Note that the δ18Ov at 500 hPa and the δ18Op are simulated by the ECHAM5-wiso model 
(Mutz et al., 2016). The δ18O cross-sections at 90.000◦E, 91.875◦E, 93.750◦E, and 95.625◦E are marked by the green, red, blue, and pink lines, respectively. The black dashed 
lines indicate the reference values of −27.5� and −10� and are used to compare the δ18Ov and δ18Op values in the monsoon season with those in the pre-monsoon 
season. The black arrows show the locations of the sampling stations of Lhasa (monsoon region), Tuotuohe (transition region, marked by Tr), and Delingha (non-monsoon 
region, marked by Non-m) from south to north, respectively. δ18O is reported as per mil deviations from VSMOW or VSMOW2.
The ECHAM5-wiso (Mutz et al., 2016) simulations also demon-
strate that the north-south (cross-sections at 90.000◦E – 95.625◦E) 
long-term mean δ18Ov and δ18Op value profiles over the monsoon 
and transition regions of the Tibetan Plateau for July (monsoon 
season) are lower than those for May (pre-monsoon season), re-
spectively (Fig. 6). Moreover, the δ18Ov and δ18Op value shifts be-
tween the pre-monsoon and monsoon seasons from south to north 
are highly consistent with changes in cloud-top temperatures, re-
spectively (Supplementary Figs. 8 and 9). Thus, the implications of 
δ18O, whether in ice cores, speleothems or in precipitation in the 
monsoon region and the non-monsoon region and at high or low 
altitude, can be explained by isotope fractionation.

The spatial correlation patterns between δ18Op and surface 
temperatures are shown in Fig. 7, based on the data from 120 sta-
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tions in Asia (10◦–50◦N, 65◦–130◦E) (see Supplementary Table 3 
for details). The ice core and speleothem δ18O records from the re-
gions north of the white line (that is affected by the westerlies and 
a weak monsoon) reflect surface temperature changes. Moreover, 
the temperature proxies of ice core and speleothem δ18O records 
from the regions north of the black line, which are affected by 
intense westerlies, are defined by significant positive correlations 
of δ18Op – T (Supplementary Table 3). In the regions south of the 
white line, which are intensely affected by the monsoon, the δ18Op

values are significantly negatively correlated with surface temper-
atures. In this case, ice core and speleothem δ18O records may 
suggest the surface temperature changes in an inverse and indirect 
way, when the nearby meteorological stations are characterized by 
sparse precipitation in winter/spring.
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Fig. 7. Distribution of the correlation coefficients of δ18Op–T in Asia. The distribu-
tion was calculated by the Kriging interpolation at 120 stations (open circles) in the 
region bounded by 10◦ to 50◦N and 65◦ to 130◦E. The area to the south of the 
white line is affected by intense summer monsoon, the region north of the black 
line is under the influence of intense westerlies, and the region between is tran-
sitional. Note the δ18O-T correlations are still significant in the transitional region 
between the white and black lines (see Supplementary Table 3 for details).

5. Conclusions

This study diagnosed the consistency of signals preserved in 
low-altitude precipitation δ18O and high-altitude ice core δ18O. 
The results demonstrate that the trend changes in the δ18O record 
at low altitude are consistent with those at high altitude. Clearly, 
the low-altitude δ18Op can capture the corresponding adjacent ice 
core δ18O signals at high altitudes.

Our data show that the δ18Op values are consistently positively 
correlated with surface temperature in the non-monsoon and tran-
sition regions but are consistently inversely correlated with surface 
temperature in the monsoon region on different time scales. This 
implies that the δ18Op measurements and ice core δ18O records 
from the non-monsoon and transition regions can directly indi-
cate temperature, but they can “inversely” reflect temperature in 
the monsoon region. It indicates that ice core δ18O records in the 
non-monsoon region can be used as a temperature proxy. In the 
monsoon region, if winter/spring precipitation is heavy, the ice 
core δ18O records can still directly reflect temperature because 
temperature and δ18O are more closely linked both in precipita-
tion and in the ice core records. However, in the monsoon region, 
if winter/spring precipitation is sparse, the inverted ice core δ18O 
records that agree with temperature will also reflect temperature 
changes. This results from the fact that trends of surface tempera-
tures in the monsoon region are in contrast to the corresponding 
cloud-top temperatures, which controlled summer precipitation 
δ18O. Our findings also indicate that inverted curves of speleothem 
δ18O records in the monsoon region are in accordance with the 
Greenland/Antarctic ice core δ18O/δD and other paleotemperature 
records. This suggest that the inverted δ18O records from Asian 
speleothems may also reflect temperature.

Here we demonstrate how temperature signals may have been 
preserved in stable isotope records from ice cores and speleothems 
from the Asian monsoon region. This study very clearly indicates 
that researchers need to be cautious when interpreting the ice core 
and speleothem δ18O records from this region in the reconstruc-
tion of paleoclimate. Our findings suggest that in order to recon-
struct temperature changes in the Asian monsoon region, ice core 
climate records from the regions where winter/spring precipitation 
is heavy may be more useful and their interpretation may depend 
in part on comparisons with inverted speleothem δ18O records.
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