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Abstract. Himalayan glaciers are melting due to atmo-
spheric warming, with the potential to limit access to wa-
ter for more than 25 % of the global population that resides
in these glacier meltwater catchments. Black carbon has
been implicated as a factor that is contributing to Himalayan
glacier melt, but its sources and mechanisms of delivery to
the Himalayas remain controversial. Here, we provide a 211-
year ice core record spanning 1781–1992 CE for refractory
black carbon (rBC) deposition from the Dasuopu glacier ice
core that has to date provided the highest-elevation ice core
record (7200 m). We report an average rBC concentration of
1.5 µgL−1 (SD= 5.0, n= 1628) over the 211-year period.
An increase in the frequency and magnitude of rBC deposi-
tion occurs after 1877 CE, accompanied by decreased snow
accumulation associated with a shift in the North Atlantic
Oscillation Index to a positive phase. Typically, rBC is de-
posited onto Dasuopu glacier during the non-monsoon sea-
son, and short-lived increases in rBC concentration are asso-
ciated with periods of drought within neighboring regions in
northwestern India, Afghanistan, and Pakistan. Using a com-
bination of spectral and back-trajectory analyses, as well as
a comparison with a concurrent analysis of trace metals at
equivalent depths in the same ice core, we show that biomass
burning resulting from dry conditions is a source of rBC to
the central Himalaya and is responsible for deposition that
is up to 60 times higher than the average rBC concentration
over the time period analyzed. We suggest that biomass burn-
ing is a significant source of rBC to the central Himalaya and

that the rBC record can be used to identify periods of drought
in nearby regions that are upwind of Dasuopu glacier.

1 Introduction

Although the rate and extent of glacier melt differ geograph-
ically, the overall trend of glacier mass loss globally, particu-
larly in mountain glaciers, is well documented (IPCC, 2013).
While warming summer temperatures resulting in increased
glacier mass loss (e.g., Gregory and Oerlemans, 1998) and
decreasing precipitation as snow (Raper and Braithwaite,
2006) are important factors contributing to glacier mass
wastage globally, the deposition of atmospheric aerosols that
darken the glacier surface also contributes to melt (Flanner et
al., 2007; Xu et al., 2009, 2012), particularly in proximity to
aerosol emission sources. The most efficient of these aerosols
is black carbon (BC), which is produced by a variety of com-
bustion processes (Bond et al., 2004, 2013), most commonly
by the incomplete combustion of fossil fuels and biomass
(Jacobson, 2004; Hammes et al., 2007). BC is also the dom-
inant absorber of visible light in the atmosphere (Lindberg
et al., 1999) and exerts a positive radiative forcing globally,
second only to CO2 (+1.1 and +1.6 Wm−2, respectively;
Ramanathan and Carmichael, 2008). BC continues to absorb
radiation upon deposition from the atmosphere onto glacier
surfaces, reducing ice and snow albedo, which leads to melt
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(Hansen and Nazarenko, 2004; Forster et al., 2007; Xu et al.,
2009; Doherty et al., 2013).

A significant source of BC emitted to the atmo-
sphere results from anthropogenic activity (Ramanathan and
Carmichael, 2008; Bond et al., 2013). The BC flux to the at-
mosphere has increased by a factor of 2.5 since the Industrial
Revolution, resulting in an increase in the global atmospheric
BC burden by a factor of 2.5–3 (Lee et al., 2013). BC’s rel-
atively short atmospheric residence time influences its distri-
bution globally, with the highest concentrations being proxi-
mal to BC emission sources (Bond et al., 2007, 2013; Xu et
al., 2009). Asian regions surrounding the Himalaya are ma-
jor sources of atmospheric BC (Novakov et al., 2003; Bond
et al., 2007, 2013; Ramanathan et al., 2007), and southern
Himalayan glaciers are particularly influenced by BC emis-
sions from India (Kopacz et al., 2011; Gertler et al., 2016)
and more local emission sources that may add to the broader-
scale regional flux (Kaspari et al., 2011).

Atmospheric aerosols, including BC, are warming the
cryosphere, accelerating snowmelt in the western Tibetan
Plateau and Himalayas (Lau and Kim, 2010), and altering
the regional hydrologic cycle (Immerzeel et al., 2010). This
is a concern because Hindu Kush Himalayan (HKH) glacier
melt affects water security, particularly during the early mon-
soon and post-monsoon season (Hill et al., 2020), for densely
populated regions of Southeast Asia. Meltwater from HKH
glaciers is the source of 10 major rivers that provide water
for irrigation, hydropower, and ecosystem services for two
billion people across Asia (Scott et al., 2019); this is over
25 % of the global population.

Research into BC’s interaction with the HKH cryosphere
has increased in recent years. Several studies have docu-
mented the magnitude and timing of BC deposition using
short-term BC records preserved in surface snow that span
1–2 years (e.g., Xu et al., 2009; Ming et al., 2008, 2012; Kas-
pari et al., 2014; Zhang et al., 2018; Thind et al., 2019). More
recently, continuous surface measurements of near-surface
aerosols, including BC, have been reported for the HKH re-
gion (e.g., Marinoni et al., 2010; Bonasoni et al., 2010; Cao
et al., 2010; Babu et al., 2011; Chaubey et al., 2011; Marinoni
et al., 2013; Niu et al., 2017; Negi et al., 2019). While useful
for tracking the evolution of atmospheric BC at high tem-
poral resolution, these studies do not provide a longer-term
historical context against which current levels of BC can be
compared. Records of BC deposition preserved in ice cores
are useful as longer-term environmental archives for recon-
structing atmospheric aerosol composition that span decades
(Liu et al., 2008; Ming et al., 2008; Ginot et al., 2014). In
the HKH region, these archives are essential for identifying
trends in BC deposition onto HKH glaciers in response to in-
creasing BC emissions in surrounding regions. For example,
Ming et al. (2008) report an increasing trend in BC deposi-
tion onto East Rongbuk glacier (Mt. Everest; 6500 m a.s.l.)
during a 10-year period beginning in 1965 and then another
increase beginning in 1995 to the end of the record in 2001.

Xu et al. (2009) report a period of relatively high concen-
trations in the 1950s and 1960s in four Himalayan and Ti-
betan Plateau glaciers (Muztagh Ata, Guoqu glacier, Noi-
jin Kangsang glacier, East Rongbuk glacier, and Tanggula
glacier) and suggest a European source of BC to these sites.
They also note an increase in BC on the easternmost site
(Zuoqiupu glacier) beginning in the 1990s and suggest an In-
dian source of BC for the region. Similarly, Liu et al. (2008)
report high elemental carbon at Muztagh Ata from 1955–
1965. Ginot et al. (2014) report BC concentrations at Mera
glacier from 1999–2010 and suggest that variations in BC
over this period respond primarily to monsoonal rather than
anthropogenic forcing.

Kaspari et al. (2011) were the first to present a BC record
that extended back to the pre-industrial period (1860–2000)
in an ice core from East Rongbuk glacier (6518 m a.s.l.) and
reported a threefold increase in BC deposition since 1975,
indicating that anthropogenic BC is contributing to the BC
flux to the southern Himalaya. Jenkins et al. (2016) report an
increase in BC deposition in the central Tibetan Plateau be-
ginning in 1975 from the Guoqu glacier ice core record span-
ning 1843–1982. These deep ice core records are valuable
for evaluating long-term trends in BC spanning the Indus-
trial Revolution to the present and the concomitant increase
in anthropogenically sourced BC emissions. Additional ice-
core-derived BC records that span the period of industrial-
ization in Asia are required to corroborate existing historical
records of BC deposition onto HKH glaciers and to establish
a regional baseline record for BC fluxes in the region. These
records are currently lacking for the HKH and are essential
for identifying regional-scale trends in BC deposition.

The highest-elevation ice core record ever obtained is
the Dasuopu ice core (C3; Thompson et al., 2000), which
was retrieved from the Dasuopu glacier in the central Hi-
malaya (28.38◦ N, 85.72◦ E; Fig. 1) in 1997 at an elevation of
7200 m a.s.l. Thompson et al. (2000) determined that mon-
soonal precipitation is responsible for the net accumulation
of snow onto the glacier surface, of the order of 1000 mm
water equivalent per year (in 1996), permitting an annu-
ally resolved environmental record spanning 1440–1997 CE
(Thompson et al., 2000). The remote location and high eleva-
tion of the Dasuopu ice core drill site suggest that any local
influence on the deposition of atmospheric aerosols onto the
glacier surface is minimal and that accumulation is represen-
tative of mixed free tropospheric composition (Kumar et al.,
2015). Evidence suggesting that the Dasuopu glacier differs
from lower-elevation glaciers in the region with respect to
seasonal meteorology supports the hypothesis that the flux of
aerosols onto the glacier surface may be more representative
of free tropospheric composition rather than being affected
by local (valley-scale) meteorological conditions (Li et al.,
2011). Generally, the lower limit of the free troposphere in
the central Himalaya occurs at∼ 2.5 in the winter and 3.3 km
in the summer (Solanki and Singh, 2014).
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Figure 1. The location of Dasuopu glacier, Mt. Xixiabangma, and other ice cores that have provided a historical record of BC deposition in
the region. The span of each BC record is indicated.

Here, we quantify refractory BC (rBC; a subset of the
broader BC descriptor of carbonaceous particles that is
specifically measured by laser-induced incandescence; Pet-
zold et al., 2013; Lack et al., 2014) in a section of the Da-
suopu ice core from 1781–1992 CE at annual to seasonal res-
olution in the glacier ice portion. We employ spectral anal-
ysis of the rBC ice core time series to identify trends in
rBC deposited onto Dasuopu glacier across several temporal
scales and to avoid “peak picking” that might lead to subjec-
tively identifying episodes of increased rBC in the ice core
time series. The rBC record is compared to trace element
analysis of samples from equivalent depths along the same
ice core, as described by Gabrielli et al. (2020), and an at-
mospheric back-trajectory analysis to elucidate the broader-
scale trends of deposition and potential rBC sources to the
southern Himalaya.

2 Methods

2.1 The Dasuopu ice core

Dasuopu glacier descends to the north from Mt. Xixia-
bangma in the central Himalaya (Fig. 1). The ice core ex-
amined here was drilled from the Dasuopu glacier surface
to bedrock (145.4 m) with an electromechanical drill, with-
out using drilling fluid, and provides a continuous record of
deposition onto the glacier surface from 1010 to 1997 CE
(Thompson et al. 2000). Here, we examine the upper sec-
tion of the C3 ice core (hereafter referred to as the “Dasuopu
core”) from 8.4–120.3 m of depth from the surface, corre-
sponding to the period 1781–1992 CE. Sections of the Da-
suopu core outside this interval were not available for anal-
ysis. We use the Thompson et al. (2000) chronology that
was established using δ18O, dust, and NO−3 measurements, as
well as annual layer counting confirmation using the location
of the 1963 CE beta radioactivity peak from thermonuclear
tests at a depth of 42.2 m to determine the core’s age–depth
relationship. Thompson et al. (2000) also used two major
monsoon failures (1790–1796 and 1876–1877) as age–depth
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benchmarks that are reflected in the dust and Cl− records to
validate the ice core dating chronology. The chronology is
accurate to ±3 years (Thompson et al., 2000).

2.2 Sample preparation

A portion of the Dasuopu core has been housed in the Ice
Core Storage Facility (Byrd Polar and Climate Research
Center – BPCRC) at −30 ◦C since the original analysis by
Thompson et al. (2000). The portion of the Dasuopu core
analyzed here is characterized by consolidated firn from 8.4–
56.4 m and glacier ice from 56.4–120.3 m of depth. Ice was
sampled continuously (with the exception of intervals noted
in Table S1 in the Supplement) in a cold room (−5 ◦C) at sub-
annual resolution (2.5–10 cm sample interval) with a band
saw along the length of the ice section. Each ice sample was
divided in half to permit the analysis of BC and trace ele-
ments from identical depths throughout the core (n= 1572).
Prior to rBC analysis, each ice sample was rinsed with type 1
Milli-Q (hereafter MQ) water at room temperature in a class
100 laboratory to remove any contaminants from the outer
edges of the core, placed in a sealable polyethylene bag, and
immediately stored frozen (−34 ◦C) to ensure that the sam-
ple did not melt prior to analysis.

Due to sample volume limitations resulting from previous
studies of the Dasuopu core (e.g., Thompson et al., 2000;
Davis et al., 2005), 52 firn samples (5.5–10 cm length) were
collected at discontinuous intervals (where sufficient sample
volume was available) from 8.4–56.4 m of depth in the cold
room (−5 ◦C) using a band saw. The outer 2 cm of each sam-
ple (n= 56) was removed using clean stainless-steel knives
(soaked in 2 N HNO−3 and rinsed with MQ water) under lam-
inar flow conditions in the cold room to remove surface con-
taminants. Clean firn samples were stored frozen (−30 ◦C)
in double polypropylene bags until analysis.

2.3 BC analysis

The rBC was quantified by laser-induced incandescence us-
ing a single-particle soot photometer (SP2; Droplet Mea-
surement Technologies, Longmont, USA; Schwarz et al.,
2006; Wendl et al., 2014) at Central Washington Univer-
sity (Ellensburg, WA, USA). Frozen samples were melted at
room temperature, transferred from storage bags into 50 mL
polypropylene centrifuge tubes, and sonicated for 20 min im-
mediately prior to analysis. Each liquid sample was stirred
with a magnetic bar as water was routed into a CETAC U-
5000AT+ ultrasonic nebulizer (Teledyne CETAC Technolo-
gies, Omaha, USA; ∼ 18 % nebulization efficiency at 220,
356, and 505 nm particle size; Menking, 2013; Wendl et
al., 2014) using a peristaltic pump. The resultant aerosols
flowed to the SP2 inlet at a known rate using carbon-free
air carrier gas. The peak intensity of light emitted by an in-
candescing rBC particle is linearly proportional to its mass
(Schwarz et al., 2006), and the SP2 detects this emitted light

using the amplified output from two photodetectors (broad-
band and narrowband) to provide a detection range of ∼ 70–
500 nm volume-equivalent diameter (VED; Kaspari et al.,
2014). A five-point calibration curve (∼ 0.75–12.5 ppb) us-
ing Aquadag standards and MQ water was performed daily
to correct for BC loss during nebulization (Wendl et al.,
2014). MQ water was analyzed every five samples as a blank
to monitor instrument baseline conditions. If the baseline
was above background levels, then MQ water would be run
through the system until stability was achieved. Baseline in-
stability was not observed throughout the course of the anal-
ysis. The SP2 data output was processed using the PSI SP2
Toolkit version 4.100a (Paul Scherrer Institute, Switzerland)
and the IGOR Pro software platform (WaveMetrics Inc.,
Portland, USA).

2.4 Spectral analysis

The record of rBC concentration with depth through the
Dasuopu ice core provides a time series of rBC deposition
onto Dasuopu glacier over time. The decomposition of the
time series into time–frequency space using spectral analy-
sis (wavelet analysis) permits the identification of dominant
modes of variability and their variance with time (Torrence
and Compo, 1998). Wavelet analysis is well suited to the
analysis of time series data with a frequency and/or mag-
nitude that is nonstationary through the signal (Debret et al.,
2007). For example, wavelet analyses have been used to iden-
tify Himalayan climatic oscillations related to orbital forcing,
Dansgaard–Oeschger cycles, and Heinrich events in the 1992
Guliya ice core (Yang et al., 2006). They have also been used
to characterize the increased role of El Niño–Southern Oscil-
lation (ENSO) climate forcing in Antarctic temperature since
∼ 1850 from ice core records from East and West Antarctica
(Rahaman et al., 2019) as well as a switch from external forc-
ing to internal forcing mechanisms on global climate during
the mid-Holocene (Debret et al., 2009).

The ice core sampling strategy employed here may influ-
ence the results of the spectral analysis because the upper-
most firn section was not sampled continuously and there
are occasional sampling gaps in the glacier ice section (Ta-
ble S1). The discontinuous sampling of the firn section likely
resulted in an incomplete characterization of the rBC de-
posited onto the Dasuopu glacier since 1944 (56.4 m of
depth). Further, the number of samples per year is not consis-
tent throughout the record because of interannual differences
in snow accumulation (Fig. S1 in the Supplement). It is im-
portant to note that the spectral analysis treats the rBC time
series as a linear depth–time function. However, because the
depth–time relationship in the ice core is not linear, data are
treated here as a function of the sample number of progres-
sion with depth in the ice core, while the dates of the individ-
ual features detected relative to sample number are specified
using the Thompson et al. (2000) depth–age model. There-
fore, the spectral decomposition of the time series into time–
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frequency space is achieved while minimizing the influence
of data gaps and nonlinear accumulation rate.

The wavelet analysis of the Dasuopu rBC record was per-
formed using the Wavelet Toolbox in MATLAB (version
R2020a; MathWorks). A continuous 1-D wavelet transform
was generated to identify modes of variability and the char-
acteristics of that variability with time throughout the rBC
record. The Mexican hat (or Rickler) mother wavelet was
chosen because it is similar to the shape of the annual vari-
ability in the rBC concentration signal across the time series
(Fig. S2 in the Supplement).

2.5 Trace element analysis

Trace element quantification at equivalent depths to the rBC
was only possible for the glacier ice section of the Dasuopu
ice core due to lack of sampling volume in the correspond-
ing overlying firn sections. Trace element concentration was
determined by inductively coupled plasma sector field mass
spectrometry (ICP-SFMS) at BPCRC. A total of 23 trace el-
ements were measured (Al, As, Ba, Bi, Cd, Co, Cr, Cs, Fe,
Ga, Mg, Mn, Mo, Nb, Ni, Pb, Rb, Sb, Ti, Tl, U, V, and Zn)
using methods described in Uglietti et al. (2014) and reported
by Gabrielli et al. (2020). The trace element crustal enrich-
ment factor (EF) is used to identify trace element contribu-
tions exceeding natural background levels and was calculated
relative to Fe and elemental ratios of dust from the Tibetan
Plateau following Gabrielli et al. (2020) as an additional vari-
able to be compared with rBC.

2.6 Back-trajectory analysis

While the complex topography of the Himalayas affects lo-
cal wind patterns, back-trajectory modeling permits the char-
acterization of the broader regional catchment from which
rBC may be derived. Atmospheric circulation capable of de-
livering rBC to Dasuopu glacier was identified using the
Hybrid Single Particle Lagrangian Trajectory Model (HYS-
PLIT; NOAA Air Resources Laboratory). A 7 d back tra-
jectory was chosen as a conservative estimate of rBC atmo-
spheric residence time given the range reported in the liter-
ature (e.g., Ogren and Charlson, 1983; Reddy and Boucher,
2004, 2007; Samset et al., 2014; Lund et al., 2018). Back
trajectories from the Dasuopu drill site were calculated at 6 h
intervals from 1948–1991 for January (winter/non-monsoon)
and July (summer/monsoon) using the NCEP/NCAR (Na-
tional Centers for Environmental Prediction/National Center
for Atmospheric Research) reanalysis from 1948 (the limit
of the NCEP/NCAR dataset) to 1991.

3 Results

3.1 The rBC record

Figure 2a shows the 211-year rBC record from the Da-
suopu ice core. The mean rBC concentration is 1.5 µgL−1

(SD= 5.0, n= 1628) from 1781 (±3 years) to 1992 CE. The
mean rBC concentration in the glacier ice section from 1781
to 1944 and the discontinuously sampled firn section from
1944 to 1992 is 1.4 (SD= 4.4, n= 1572) and 6.0 µgL−1

(SD= 13.5, n= 52), respectively. Note that the median val-
ues for the same time periods are less influenced by outliers
with high concentrations (median 1781 to 1944= 0.2, 1944
to 1992= 0.6 µgL−1). Even though the rBC concentration in
the ice and firn described here is significantly different (two-
tailed Mann–Whitney U test, p < 0.05), the effect of discon-
tinuously sampling the firn section and its accurate charac-
terization of rBC since 1944 is unknown. It is possible that
the firn section is biased towards higher rBC concentrations
because only 13 % (7 of 52) of the firn samples correspond to
snow deposited during monsoon conditions, as indicated by
depleted δ18O (Fig. S4 in the Supplement), which is a period
associated with lower atmospheric aerosol loading (Lelieveld
et al., 2018). In general, increases in rBC concentration cor-
respond to δ18O enrichment (Fig. 3) and increased dust in
glacier ice, indicating that higher rBC concentrations coin-
cide with the non-monsoonal dry season (Figs. 3 and S4 for
firn section; Kaspari et al., 2014). Occasional exceptions oc-
cur; for example, in 1824 CE a period of high rBC concentra-
tions corresponds to a relatively low dust concentration and
a low δ18O value (Fig. 3a). The relationship between δ18O
enrichment and rBC over a broader and continuous time win-
dow is show in Fig. 3d. Here, an analysis of the magnitude-
squared coherence between 1856 and 1943 at scales rang-
ing from a single rBC measurement (period= 1) to 953 rBC
measurements (period= 476 data points) shows high coher-
ence at longer periods (> 256 data points) with no phase lag
(as indicated by horizontal arrows oriented to the right) and
strong coherence between 1878 and 1900 CE at a period of
24–120 data points (∼ 2–10 years; 1 year= 12 data points;
Fig. S1) with a lag in rBC of 0.25 for a cycle (as indicated
by the vertical arrow) or 0.25–2.5 years (6–30 data points),
suggesting that rBC increases at the end of the dry season
during this period. There is also a band of strong coherence
from 1910–1943 occurring with a periodicity of ∼ 15 years
(∼ 8 pointsyr−1; Fig. S1) with no phase lag, suggesting that
rBC concentrations reach their maximum at the peak of the
dry season.

The smoothed (5-year median) rBC concentration and flux
(the product of mean annual rBC concentration and snow ac-
cumulation) records show an increase beginning in ∼ 1870
and again in ∼ 1935 (Fig. 2a and b). The discontinuous firn
section of the core has elevated concentrations during the late
1960s–1970s, consistent with observations from East Rong-
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Figure 2. (a) The rBC record from the Dasuopu ice core (red). Red dots indicate discrete firn samples. The 5-year median is indicated (blue).
(b) The rBC deposition flux onto Dasuopu glacier (red) with the 5-year median (blue). (c) The annual snow accumulation record for the
Dasuopu ice core (Davis et al., 2005).

buk glacier by Ming et al. (2008) and Kaspari et al. (2011)
and for Tanggula glacier by Xu et al. (2009).

3.2 Spectral analysis

We chose to examine three modes of variability within the
spectral analysis (Fig. 4b), two of which correspond to North
Atlantic sea surface temperature (SST), because of the im-
portant role of westerly atmospheric circulation in the Da-
suopu region during the winter non-monsoonal season (Davis
et al., 2005); the annual frequency is responsible for 90 % of
the variance in the seasonal cycle of SST in the North At-
lantic (Feliks et al., 2011) and ∼ 4.5-year variability that is
the middle value of three modes of SST oscillation (3.7, 4.5,
and 6.2 years; Feliks et al., 2011) in the Cape Hatteras re-
gion of the North Atlantic (44◦ N, 47◦W). A third mode of
variability (∼ 85 years) was chosen to identify longer-term
variation in the rBC record.

The mode at a = 6 (a = 0.5× frequency) indicates high-
frequency and generally relatively low-amplitude vari-
ability in spectral coefficients (81 % of rBC concentra-
tions are< 1 µgL−1) occurring at approximately annual
(12 data pointsyr−1; SD= 4.3, n= 112) resolution with iso-
lated relatively higher-amplitude events dispersed throughout
the record (Fig. 4c). The frequency of these higher-amplitude
events increases from ∼ 1877 until 1992 CE (Fig. 4a and c).

The lower-frequency mode (a = 27; ∼ 4.5 years) cap-
tures periodic peaks in rBC concentrations centered at 1825,

1877, 1888, 1908, 1920, 1930, and 1977 CE if peaks that
are> 25 % of the largest peak amplitude in the time series
(1977 CE) are considered (Fig. 4d). Dips in the a = 27 spec-
tral coefficients, indicating periods of low amplitude (de-
fined here as> 25 % of the amplitude of the lowest dip
at 1937 CE), occur at 1818, 1868, 1875, 1880–1884, 1893,
1914, 1924, and 1937 CE (Fig. 4d).

The a = 512 (∼ 85-year) mode identifies a shift from
some samples with negative spectral coefficients (values be-
low zero) to those with positive spectral coefficients at ∼
1877 CE (Fig. 4e). All three modes identify a period early
in the rBC record characterized as a quiescent period (1781–
1877 CE) during which rBC concentrations do not exceed
19.3 µgL−1 (mean= 0.8, SD= 3.0, n= 880), except for the
isolated peak (63.3 µgL−1) at 1825 CE (Fig. 4a, c, and d).
Prior to 1877 the rBC concentration in the ice core is signifi-
cantly lower (Mann–WhitneyU test, p < 0.05) and less vari-
able (mean= 0.8, SD= 3.03, n= 898) than the post-1877
period (mean= 2.3, SD= 6.6, n= 732; Fig. 4). While the
∼ 85-year mode identifies a shift from negative to positive
spectral coefficients in 1877, the 5-year median of the rBC
record identifies an increase occurring at ∼ 1870. This sug-
gests that the wavelet analysis may be sensitive to individual
or tightly clustered peaks in the rBC record, such as those
that occur between 1875 and 1880 (Figs. 3a and 4a).
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Figure 3. Peaks in the rBC record compared to the total dust and δ18O records (Thompson et al., 2000) over three time intervals (a: 1819–
1830, b: 1876–1890, c: 1911–1921 CE) in the Dasuopu ice core. Note that peaks in the rBC record are associated with depleted δ18O and
increased dust deposition. The spectral coherence between rBC and δ18O between 1856 and 1943 CE (d) shows strong magnitude-squared
coherence at a long period (∼ 21 years) with no phase lag (as shown by arrows oriented in radian space (i.e., the arrow oriented to the right
indicates no phase lag; arrows oriented to the left indicate an antiphase relationship), strong magnitude-squared coherence between 2 and
10 years with a 0.5–2.5-year phase lag between 1878 and 1900 CE, and strong magnitude-squared coherence with no phase lag between 1910
and 1943 CE.
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Figure 4. The spectral analysis of the Dasuopu rBC concentration record. Sample number 1 is located at the bottom of the ice core (1781 CE),
and sample number 1628 is at the top of the firn section (1992 CE). (a) The rBC record plotted relative to sample number. (b) The spectral
analysis showing variance across all frequency scales relative to sample number ranging from a = 2 to a = 512. Darker shades indicate
relatively stronger (more positive) coherence between the wavelet and the rBC record, as indicated in the spectral coefficients. Panels (c–e)
are the spectral coefficients relative to sample number for frequency scales a = 6, 27, and 512, respectively.

3.3 Comparison of the rBC record with the trace
element record

When considering the full record (n= 857 to 916 depending
on the element; Table 1), all of the trace element concentra-
tions analyzed are significantly correlated with rBC (range
of 0.15 for Zn at n= 915 to 0.27 for Rb at n= 914; Table 1;
α = 0.01). The Spearman correlation test is used instead of
the Pearson correlation test because the rBC and trace ele-
ment data are not normally distributed. If the low-rBC pre-
1877 period, as indicated by the spectral analysis, is consid-

ered independently, then the correlation between trace ele-
ments and rBC is still statistically correlated (range of 0.26
for Zn at n= 915 to 0.44 for Mg and Mn at n= 915). In
contrast, the post-1877 period shows a statistically insignifi-
cant slightly negative correlation between the trace elements
and rBC ranging from −0.04 (Cs and Nb, n= 913 and 915,
respectively) to−0.10 (Bi and Mn, n= 857 and 915, respec-
tively).

The crustal enrichment factor (EF) for all of the trace ele-
ments was significantly weakly to moderately negatively cor-
related with rBC for all trace elements, ranging from −0.21
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Table 1. The Spearman correlation coefficient (rs, α = 0.01) for trace elements and the trace element enrichment factor (EF) relative to rBC
concentration throughout the Dasuopu ice core. Italics indicate a non-statistically significant rs.

Trace EF EF EF
element Total Pre-1877 Post-1877 total pre-1877 post-1877
(n) rs rs rs rs rs rs

Al (915) 0.22 0.40 −0.08 −0.45 −0.40 −0.55
As (914) 0.23 0.41 −0.06 −0.41 −0.41 −0.44
Ba (916) 0.26 0.43 −0.07 −0.24 −0.25 −0.28
Bi (857) 0.20 0.40 −0.10 −0.37 −0.33 −0.44
Cd (916) 0.23 0.37 −0.07 −0.50 −0.48 −0.62
Co (915) 0.23 0.41 −0.09 −0.38 −0.40 −0.42
Cr (915) 0.19 0.38 −0.09 −0.56 −0.53 −0.64
Cs (913) 0.25 0.41 −0.04 −0.39 −0.35 −0.48
Fe (915) 0.23 0.42 −0.07
Ga (915) 0.22 0.39 −0.07 −0.57 −0.54 −0.68
Mg (915) 0.24 0.44 −0.09 −0.21 −0.20 −0.22
Mn (915) 0.24 0.44 −0.10 0.02 −0.01 0.06
Mo (915) 0.22 0.37 −0.08 −0.54 −0.52 −0.63
Nb (915) 0.21 0.36 −0.04 −0.48 −0.46 −0.59
Ni (915) 0.22 0.39 −0.09 −0.50 −0.50 −0.57
Pb (916) 0.23 0.40 −0.08 −0.31 −0.31 −0.35
Rb (914) 0.27 0.43 −0.05 −0.49 −0.47 −0.60
Sb (916) 0.19 0.38 −0.07 −0.56 −0.52 −0.65
Ti (914) 0.23 0.41 −0.08 −0.28 −0.25 −0.42
Tl (916) 0.24 0.42 −0.08 −0.52 −0.49 −0.62
U (916) 0.24 0.41 −0.07 −0.29 −0.29 −0.34
V (915) 0.24 0.40 −0.07 −0.52 −0.51 −0.63
Zn (915) 0.15 0.26 −0.06 −0.53 −0.52 −0.63

for Mg to −0.57 for Ga, except for Mn, which was insignif-
icantly positively correlated (0.02). The trace element EFs
were more negatively correlated with rBC during the post-
1877 period than the pre-1877 period (excluding Mn because
it was insignificantly correlated; SD= 0.14), although this
difference is not statistically significant, with values t (22)=
1.88 and p = 0.07 (p < 0.05).

3.4 Back trajectory

Figure 5a shows the results of the July back trajectory:
aerosols are primarily derived from areas to the southwest
of the Dasuopu drill site, from the Arabian Sea, and across
western and northern India during the monsoon. A secondary
source is located to the west and draws atmospheric aerosols
from the eastern Mediterranean Sea and Arabian Peninsula.
January (non-monsoon) circulation is derived from the west-
erly circulation across northeastern Africa, central Europe,
the Arabian Peninsula, and northwestern India (Fig. 5b).

4 Discussion

4.1 rBC concentrations

The mean rBC concentration in the Dasuopu ice core from
1781 to 1992 CE is 1.5 µgL−1 (SD= 5.0, n= 1628); this is
6 times higher than the average rBC reported by Kaspari et
al. (2011) for the period 1860–1992 and∼ 2 times lower than
BC reported by Ming et al. (2008) and Xu et al. (2009) for
the East Rongbuk ice core record over similar time periods
(Fig. 1). Note that while Kaspari et al. (2011) measured BC
from the East Rongbuk core using the same incandescence
method used here, samples were stored as liquid and mea-
sured concentrations are likely underestimated due to rBC
particle adherence onto the walls of the storage container
and/or agglomeration of BC particles above the detected par-
ticle size range (Wendl et al., 2014; Kaspari et al., 2014).
In contrast, Ming et al. (2008) and Xu et al. (2009) mea-
sured BC concentration by thermo-optical methods, which
may result in an overestimation of reported BC due to or-
ganic matter pyrolysis during analysis (Gilardoni and Fuzzi,
2017), and a larger fraction of the carbonaceous particles be-
ing classified as BC.
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Figure 5. Frequency of back trajectories for air masses arriving at Mt. Xixiabangma in (a) July and (b) January. Red and blue indicate
higher-frequency and lower-frequency air mass flow paths, respectively. The area included in the Old World Drought Atlas (OWDA; Cook
et al., 2015) and the Monsoon Asia Drought Atlas (MADA; Cook et al., 2010) reconstructions is indicated (c).

4.2 rBC seasonality

Seasonally, peaks in rBC concentration correspond to inter-
vals of increased dust concentration and enriched δ18O over
the entire ice core record (see examples in Fig. 3), indi-
cating that high BC concentrations are associated with the
non-monsoonal season when drier westerly air masses dom-
inate atmospheric circulation (Fig. 5). Weather station mea-
surements and previous snow–ice studies in the region con-
firm that rBC concentrations are lower in near-surface air
at the Nepal Climate Observatory-Pyramid (NCO-P; 5079 m
a.s.l.) during the monsoon (Bonasoni et al., 2010; Marinoni
et al., 2010, 2013) and higher during the pre-monsoon pe-
riod (Babu et al., 2011; Nair et al., 2013; Ginot et al., 2014;
Kaspari et al., 2014; Chen et al., 2018).

4.3 Temporal variations in high rBC concentrations
and regional climate

The pre-1877 CE period differs from the post-1877 CE pe-
riod in the frequency and amplitude of variability in rBC
concentration (Figs. 2a and 4e). The high-rBC-concentration
event in∼ 1825 CE (Fig. 4c) occurs during an otherwise qui-
escent pre-1877 CE period coinciding with a time of severe
regional moisture stress and droughts, as reflected in sup-
pressed tree ring growth across Nepal, peaking in 1817 CE
(Figs. 6 and 7 in Thapa et al., 2017). This period of abnor-
mally dry conditions occurs after two large volcanic events:
the Tambora eruption of 1815 (Stothers, 1984) and an erup-
tion of unknown origin in 1809 CE (Cole-Dai et al., 2009).
Anchukaitis et al. (2010) argue that major explosive erup-
tions in the tropics can disrupt the Asian monsoon system
and result in drier conditions in central Asia for up to 8 years
afterward. Dry conditions are typically associated with an in-
crease in the frequency and severity of biomass burning in
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Southeast Asia (Baker and Bunyavejchewin, 2009), and the
association between dry conditions and increases in rBC con-
centration suggests that biomass burning may be a source of
high-rBC-concentration events at Dasuopu glacier.

From ∼ 1877 CE until the end of the rBC record in 1992,
rBC concentrations are significantly higher and their am-
plitude increases, as indicated by the shift from negative
to positive spectral coefficients at a = 512 (Fig. 4e). This
suggests a change in either the magnitude of rBC emission
source(s) or in the atmospheric mechanism that delivers rBC
to Dasuopu glacier after ∼ 1877 CE. The increase in rBC af-
ter ∼ 1877 corresponds to a decrease in snow accumulation
onto Dasuopu glacier (Fig. 2c; Davis et al., 2005) and an
increase in the rBC flux from the atmosphere beginning in
∼ 1880 (Fig. 2b). This decrease in snow accumulation has
been linked to a strengthening of the Icelandic low-pressure
system as temperatures in the Northern Hemisphere warmed
at the termination of the Little Ice Age (LIA). This resulted in
a shift in the North Atlantic Oscillation Index (NAO) from a
negative mode to a positive mode, contributing less moisture
to the southern Himalaya during winter (Davis et al., 2005).
Less winter snow accumulation after ∼ 1877 would be asso-
ciated with generally drier winter (non-monsoon) conditions
when the rBC concentration is highest at Dasuopu glacier.

4.4 The influence of drought and biomass burning on
the rBC record

Biomass burning and associated rBC emissions result from
dry conditions and drought, which lowers the water table and
dries out biomass fuel (Baker and Bunyavejchewin, 2009;
Tosca et al., 2010). Further, aerosols produced during fires
may contribute to a positive feedback cycle whereby smoke
plume shading decreases sea surface temperature, while in-
creased concentrations of atmospheric BC warm and stabi-
lize the troposphere, suppressing convection and precipita-
tion and intensifying drought conditions on land (Tosca et
al., 2010). High BC aerosol levels in ambient air correspond-
ing to agricultural burning beginning in late April and forest
fire activity during the non-monsoon season were reported
by Negi et al. (2019) from ambient air measurements at Chir-
basa, India (Gangotri glacier valley) during 2016. The spec-
tral coefficients calculated here identify trends in the rBC
concentration on Dasuopu glacier and can be compared to
regional rainfall data from a network of rain gauge stations
that are distributed across India to identify periods of dryness
(e.g., Parthasarathy et al. 1987) associated with higher rBC
concentrations.

Continuous regional instrumental rainfall records within
the atmospheric catchment for atmospheric aerosols at Da-
suopu glacier prior to the early 1900s CE are rare, and
biomass burning records are nonexistent. However, contin-
uous tree-ring-based reconstructions of precipitation condi-
tions for Europe, North Africa, and the Middle East are pro-
vided by the Old World Drought Atlas (OWDA; Cook et

al., 2015) and include areas identified by the back-trajectory
analysis as being potential source regions for rBC to Da-
suopu glacier (Fig. 5b). The Monsoon Asia Drought Atlas
(MADA; Cook et al., 2010) provides a similar dataset for
regions in East Asia, including Pakistan and Afghanistan,
which may contribute rBC on Dasuopu glacier (Fig. 5b). An
instrumental record for both the OWDA and MADA begins
in 1901 (Fig. 6). Comparing the peaks in rBC concentra-
tion identified by the spectral coefficients (a = 27, ∼ 4.5-
year frequency) centered at 1825, 1877, 1888, 1898, 1908,
1920, 1930, and 1977 CE (Fig. 4d) to the reconstructed and
instrumental self-calibrating Palmer Drought Severity In-
dex (scPDSI) for the summer season (positive and negative
scPDSI indicate wet and dry conditions, respectively; Fig. 6),
it is possible to identify periods of dryness that might con-
tribute to the production of rBC by biomass burning.

The rBC wavelet coefficient peaks in 1825 and 1877 CE
occur at the end of a decade-long period of negative scPDSI
in the OWDA and MADA reconstructions, respectively
(Fig. 6). Similarly, 1888, 1898, and 1930 follow years of neg-
ative scPDSI in either the OWDA or MADA reconstructions,
indicating periods of dryness preceding episodes of elevated
rBC concentration at Dasuopu glacier (Fig. 6). The 1908 and
1920 CE peaks do not follow periods of negative scPDSI in
the OWDA or MADA reconstructions, but they follow pe-
riods of negative scPDSI in the MADA instrumental record
(Fig. 6), indicating that dryness is associated with these rBC
concentration peaks as well. The peak centered at 1977 CE
follows periods of positive scPDSI in the OWDA and MADA
reconstructions and instrumental records. It does not appear
to be related to abnormally dry conditions and may indicate
an unidentified source of rBC. Conversely, dips in the spec-
tral coefficients at a ∼ 4.5-year frequency (a = 27) indicate
periods of low rBC concentration occurring at 1818, 1868,
1875, 1880-1884, 1893, 1914, 1924, and 1936 CE. With the
exception of the dip centered at 1875 and 1936 CE, dips
in the spectral coefficient record follow periods of positive
scPDSI in either the OWDA and MADA tree ring reconstruc-
tion or both. While dips centered at 1914 and 1924 CE follow
periods of positive scPDSI in both the OWDA and MADA
instrumental record, 1936 CE follows a period of positive
scPDSI in the MADA instrumental record only (Fig. 6).

In addition to the scPDSI from the OWDA and MADA
tree ring reconstructions and the instrumental record (since
1900 CE), an independent historical record for rainfall is
available for India that was compiled by Mooley et al. (1981)
and has since been reported in terms of drought and flood
severity by Parthasarathy et al. (1987; Supplement Table S1a
and b). As mentioned, several periods of high rBC concen-
tration are identified by the spectral coefficients at a = 27
(∼ 4.5-year frequency) centered at 1825, 1877, 1888, 1898,
1908, 1920, 1930, and 1977 CE (Fig. 4d). These periods of
high rBC concentration coincide with periods of drought
reported for India, particularly in western and northwest-
ern meteorological subdivisions (Parthasarathy et al., 1987),
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Figure 6. The Dasuopu rBC record (in red) compared to regional reconstructed and instrumental climate records from the Old World
Drought Atlas (OWDA; dark blue) and the Monsoon Asia Drought Atlas (MADA; light blue). Note the correspondence between a negative
self-calibrating Palmer Drought Severity Index (scPDSI) and periods of high rBC deposition. Data for both the reconstructed and instrumental
climate records are obtained from the OWDA (drought.memphis.edu/OWDA/) and MADA (drought.memphis.edu/MADA).

within the ±3-year dating error of the ice core chronology
(Fig. 7; Fig. S3a in the Supplement). For example, from
1876–1878, India experienced widespread moderate to se-
vere drought conditions (Parthasarathy et al., 1987; Fig. 7a)
and soil moisture deficits (Mishra et al., 2019) that resulted
in the “Madras famine” (Cook et al., 2010; Mishra et al.,
2019). In 1888 (and 1891, which is within the ±3-year ice
core dating uncertainty), regions in western and northwest-
ern India experienced moderate and severe drought condi-
tions (Fig. 7b). In 1899 (corresponding to 1898 in the rBC
record, ±3 years), northwestern and western meteorologi-
cal subdivisions (among others) experienced severe drought,
while moderate drought was experienced by most of India
(Fig. 7c), resulting in famine that affected 59.5 million peo-
ple (Mishra et al., 2019). In 1911 (1908± 3 years) there
was extreme drought reported in the northwest and moderate
drought reported in the north-central and southwestern mete-
orological districts (Fig. 7d). In 1918 (1920± 3 years), there
was severe drought reported in the north and central-west
and moderate drought reported throughout the southern and
north-central regions of the continent (Fig. 7e). From 1927–
1929 (1930±3 years), moderate drought was reported in the
northern region of India (Fig. 7f). Similar to observations
from the OWDA and MADA comparisons, the ∼ 1977 pe-
riod does not stand out in the climate record as being ex-

ceptional (Fig. S3), and it does not correspond to anoma-
lously high rBC values (Fig. 2a), yet it corresponds to a pe-
riod of highly positive spectral coefficients (Fig. 4c and d).
Finite-length signal border effects (so-called edge effects)
have been well documented, whereby a wavelet transform
(such as that used here) yields abnormal coefficients as the
wavelet extends into the “shoulder areas” of the record that
do not have data (Su et al., 2011; Montanari et al., 2015). It
is possible that the peak identified here at a = 6 and a = 27
is a result of wavelet transform edge effects. Alternatively,
sources other than biomass burning that have not been iden-
tified here may contribute to the high rBC values observed in
the Dasuopu ice core ∼ 1977 CE.

Dips in the a = 27 spectral coefficient record correspond
to periods of flooding in India. For example, the trough at
1875 CE corresponds to reports of extreme flooding in the
northwest and moderate flooding in western India (Fig. 8a).
It should be noted that moderate drought was reported in the
far west and south, but these conditions did not result in an
rBC peak in the a = 27 coefficients (Fig. 4d). For the period
∼ 1880 to 1886 CE, severe and moderate flooding is reported
in the west in 1884 CE, with moderate drought to the south
and east that did not result in an rBC peak in the a = 27 co-
efficients (Fig. 8b). From 1880–1882 CE, the continent ex-
perienced relatively stable conditions, with moderate flood-
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Figure 7. The distribution of meteorological subdivisions in NW India reporting drought during periods of high spectral intensity at a = 27
scale.

ing in some western and northwestern districts (Fig. S3).
Western India experienced severe and moderate flooding in
the west and northwest in 1893 (Fig. 8c), corresponding to
a dip in the a = 27 coefficients (Fig. 4d). The years 1914
and 1917 (1914± 3 years), 1926 (1924± 3 years), and 1933
(1936± 3 years) all saw severe and/or moderate flooding in
western meteorological districts, with no drought conditions
reported in the rest of India, corresponding to dips in the
a = 27 coefficients (Fig. 8d, e, and f, respectively).

4.5 rBC and trace metals

Recent work by Gabrielli et al. (2020) suggests that atmo-
spheric trace metals preserved in the Dasuopu ice core, likely
linked to the long-range transport of fine fly ash, are indica-
tive of emissions from coal combustion and fires used to
clear forested areas to the west of the Himalayas since the
beginning of the Industrial Revolution (∼ 1780 CE). Fly ash
is composed of alumino-silicate and iron-rich by-products of
coal combustion and biomass burning, and it is enriched in
trace metals (Ross et al., 2002). Fly ash is not detected by the
SP2 as configured here.
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Figure 8. The distribution of meteorological subdivisions in NW India reporting flood conditions during periods of low spectral intensity at
a = 27 scale.

We observe a general negative correlation between BC
and the crustal enrichment factor (EF; indicative of element
concentrations above the natural background derived from
crustal material) of trace metals in the Dasuopu core, par-
ticularly after 1877 CE (Table 1) when rBC spectral coeffi-
cients are positive at a = 512 (Fig. 4e). This illustrates that
the enrichment of the non-crustal fraction of trace metals (as
indicated by a positive EF) and fly ash occurred out of phase
from rBC.

Increases in the concentration of rBC resulting from
biomass burning may be expected to correlate with trace ele-
ments associated with the biomass source material (K, Cl,
Zn, and Br; Echalar et al., 1995). Of these, only Zn was
analyzed here. The Zn concentration is only weakly corre-
lated with rBC (0.15), although more strongly (0.26) in the
pre-1877 period than in the post-1877 period (−0.06), and
Zn’s EF is moderately negatively correlated, particularly in
the post-1877 period (−0.63). While the lack of correlation
between potential biomass-burning-derived trace elements
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such as Zn and rBC might suggest a non-biomass-burning
source for rBC, one should be cautious in attributing spe-
cific trace elements to biomass burning events. For exam-
ple, trace elements emitted during partial combustion can
vary depending on fire intensity (flaming vs. smoldering),
fuel source (savanna vs. forest) (Echalar et al., 1995), and
size-dependent particle adhesion (Samsonov et al., 2012).
Further, biomass burning remobilizes soil-derived particles,
which would lower the individual trace element’s EF (Gau-
dichet et al., 1995), causing a negative correlation between
rBC and EFs. There is a statistically significant negative cor-
relation with rBC for all of the trace element EFs (except for
Mn), suggesting that rBC enrichment is not associated with
non-crustal trace element enrichment, which is interpreted as
an indicator of fly ash deposition (Gabrielli et al., 2020) that
is enriched above the natural dust input. Of importance is that
the discontinuous sampling of firn in the Dasuopu ice core
record presented here does not capture a continuous record
of rBC deposition during the post-1970s, which is a period
when rBC is reported to have increased in the southern Hi-
malaya (Kaspari et al., 2011) and Tibetan Plateau (Jenkins et
al., 2016; Wang et al., 2015).

5 Conclusions

Here, we present the highest-elevation (7200 m a.s.l.) record
of rBC ever reported. This record is unique in its high eleva-
tion and represents conditions in the free troposphere, away
from local sources of BC. The Dasuopu record also con-
tributes to the limited number of proxy records of BC in the
HKH region where glacier melt, and therefore factors such
as BC that affect glacier melt, influences the water security
of one of the most densely populated regions of the planet.
While the Dasuopu rBC record presented here is not well
resolved during the period after the 1970s, the record does
indicate elevated BC during 1970–1980, consistent with the
Everest ice core BC record that shows elevated BC post-1970
(Kaspari et al., 2011).

The rBC concentration at the Dasuopu site is highest dur-
ing the winter (non-monsoon) season when westerly circula-
tion is dominant. Back-trajectory analyses indicate that this
westerly circulation predominantly includes areas of west-
ern and northwestern India, Afghanistan, Pakistan, northern
Africa, central Europe, and the Mediterranean. Dry condi-
tions increase the production of rBC through biomass burn-
ing, and we suggest that regional biomass burning con-
tributes to periods of high rBC deposition onto the Dasuopu
glacier during periods of dryness as indicated by historical
records of precipitation within the atmospheric catchment of
Dasuopu glacier. The continuous historical record of precip-
itation for India, in particular, suggests an association be-
tween moderate to severe drought conditions in western and
northwestern India and rBC concentration in the Dasuopu ice
core. Upwind industrial sources of rBC, such as coal com-

bustion, appear to be of minor influence during these periods
of increased rBC deposition as indicated by the absence of
correlation between rBC concentration in the Dasuopu core
and the crustal enrichment of industrially sourced trace ele-
ments at equivalent depths in the ice core. It should be noted
that the Dasuopu ice core rBC record is discontinuous during
the period of increased regional industrial activity; thus, the
available data cannot address the importance of this regional
industrialization for rBC deposition onto Dasuopu glacier.
Together, evidence presented here indicates that while rBC
transport in the free troposphere is influenced by large-scale
synoptic circulation, regional sources of rBC strongly influ-
ence rBC deposition onto Dasuopu glacier, particularly after
∼ 1877, and that the rBC record from Dasuopu glacier may
provide a proxy record for drought and resultant biomass
burning within its catchment of atmospheric circulation.

Data availability. The data presented in this work are archived at
the National Oceanic and Atmospheric Administration World Data
Service for Paleoclimatology at https://www.ncdc.noaa.gov/paleo/
study/32952 (Barker, 2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-21-5615-2021-supplement.

Author contributions. JDB performed the sample preparation, BC
analysis, and interpretation and was the primary author of the pa-
per. SK assisted with the BC analysis and interpretation of the BC
record. PG designed the overall project and performed the trace ele-
ment analysis with AW. AW, EB, and MRS-H cut the samples from
the ice core and performed the trace element analysis. LT retrieved
the Dasuopu ice core. All authors contributed to paper preparation.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This work was funded by the NSF Atmo-
spheric Chemistry Program, the NSF-ESH program, The Ohio State
University, the Ohio State Committee of Science and Technology,
and the National Natural Science Foundation of China. We thank
the many scientists, engineers, technicians, and graduate students
from the Byrd Polar and Climate Research Center and the Lanzhou
Institute of Glaciology and Geocryology (China) that contributed to
the collection and previous analysis of the Dasuopu ice core. We are
grateful to Julien Nicolas for performing the graphic display of the
back trajectories. We thank two anonymous reviewers who provided
input to greatly improve this paper.

Financial support. This research has been supported by the NSF
Atmospheric Chemistry Program (grant no. 1149239).

https://doi.org/10.5194/acp-21-5615-2021 Atmos. Chem. Phys., 21, 5615–5633, 2021

https://www.ncdc.noaa.gov/paleo/study/32952
https://www.ncdc.noaa.gov/paleo/study/32952
https://doi.org/10.5194/acp-21-5615-2021-supplement


5630 J. D. Barker et al.: Drought-induced biomass burning as a source of black carbon

Review statement. This paper was edited by Aurélien Dommergue
and reviewed by two anonymous referees.

References

Anchukaitis, K. J., Buckley, B. M., Cook, E. R., D’Arrigo, R. D.,
and Ammann, C. M.: Influence of volcanic eruptions on the cli-
mate of the Asian monsoon region, Geophys. Res. Lett., 37, 1–5,
https://doi.org/10.1029/2010GL044843, 2010.

Babu, S. S., Chaubey, J. P., Moorthy, K. K., Gogoi, M. M.,
Kompalli, K. K., Sreekanth, V., Bagare, S. P., Bhatt, B. C.,
Gaur, V. K., Prabhu, T. P., and Singh, N. S.: High alti-
tude (∼ 4520 m amsl) measurements of black carbon aerosols
over western trans-Himalayas: Seasonal heterogeneity and
source apportionment, J. Geophys. Res.-Atmos., 116, D24201,
https://doi.org/10.1029/2011JD016722, 2011.

Baker, P. J., and Bunyavejchewin, S.: Fire behavior and fire
effects across the forest landscape of continental South-
east Asia, in: Tropical Fire Ecology, Springer Praxis Books,
Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-
77381-8_11, 2009.

Barker, J. D.: Dasuopu, China 210 Year Ice Core Refractory Black
Carbon Data, NOAA National Centers for Environmental Infor-
mation, available at: https://www.ncdc.noaa.gov/paleo-search/
study/32952, last access: 7 April 2021.

Bonasoni, P., Laj, P., Marinoni, A., Sprenger, M., Angelini, F.,
Arduini, J., Bonafè, U., Calzolari, F., Colombo, T., Decesari,
S., Di Biagio, C., di Sarra, A. G., Evangelisti, F., Duchi, R.,
Facchini, MC., Fuzzi, S., Gobbi, G. P., Maione, M., Panday,
A., Roccato, F., Sellegri, K., Venzac, H., Verza, GP., Villani,
P., Vuillermoz, E., and Cristofanelli, P.: Atmospheric Brown
Clouds in the Himalayas: first two years of continuous obser-
vations at the Nepal Climate Observatory-Pyramid (5079 m), At-
mos. Chem. Phys., 10, 7515–7531, https://doi.org/10.5194/acp-
10-7515-2010, 2010.

Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H.,
and Klimont, Z.: A technology-based global inventory of black
and organic carbon emissions from combustion, J. Geophys.
Res.-Atmos., 109, D14, https://doi.org/10.1029/2003JD003697,
2004.

Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Ro-
den, C., Streets, D. G., and Trautmann, N. M.: Historical emis-
sions of black and organic carbon aerosol from energy-related
combustion, 1850-2000, Global Biogeochem. Cy., 21, GB2018,
https://doi.org/10.1029/2006GB002840, 2007.

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Bern-
sten, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Karcher,
B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M.
C., Schultz, M. G., Shulz, M., Venkataraman, C., Zhang, H.,
Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacon-
son, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz,
J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A
scientific assessment, J. Geophys. Res.-Atmos, 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.

Cao, J., Tie, X., Xu, B., Zhao, Z., Zhu, C., Li, G., and Liu,
S.: Measuring and modeling black carbon (BC) contamina-

tion in the SE Tibetan Plateau, J. Atmos. Chem., 67, 45–60,
https://doi.org/10.1007/s10874-011-9202-5, 2010.

Chaubey, J. P., Babu, S. S., Gogoi, M. M., Kompalli, S.
K., Sreekanth, V., Moorthy, K. K., and Prabhu, T. P.:
Black carbon aerosol over a high altitude (∼ 4.52 km) sta-
tion in Western Indian Himalayas, J. Inst. Eng., 8, 42–51,
https://doi.org/10.3126/jie.v8i3.5930, 2011.

Chen, X., Kang, S., Cong, Z., Yang, J., and Ma, Y.: Con-
centration, temporal variation, and sources of black carbon
in the Mt. Everest region retrieved by real-time observa-
tion and simulation, Atmos. Chem. Phys., 18, 12859–12875,
https://doi.org/10.5194/acp-18-12859-2018, 2018.

Cole-Dai, J., Ferris, D., Lanciki, A., Savarino, J., Baroni,
M., and Thiemens, M. H.: Cold decade (AD 1810–1819)
caused by Tambora (1815) and another (1809) strato-
spheric volcanic eruption, Geophys. Res. Lett., 36, L22703,
https://doi.org/10.1029/2009GL040882, 2009.

Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D’Arrigo, R. D.,
Jacoby, G. C., and Wright, W. E.: Asian monsoon failure and
megadrought during the last millennium, Science, 328, 486–489,
https://doi.org/10.1126/science.1185188, 2010.

Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Buntgen, U.,
Frank, D., Krusic, P. J., Tegel, W., van der Schrier, G., Andreu-
Hayles, L., Baillie, M., Baittinger, C., Bleicher, N., Bonde, N.,
Brown, D., Carrer, M., Cooper, R., Cufar, K., Dittmar, C., Es-
per, J., Griggs, C., Gunnarson, B., Gunther, B., Gutierrez, E.,
Haneca, K., Helama, S., Herzig, F., Heussner, K.-U., Hofmann,
J., Janda, P., Kontic, R., Kose, N., Kynci, T., Levanic, T., Lin-
derholm, H., Manning, S., Melvin, T. M., Miles, D., Neuwirth,
B., Nicolussi, K., Nola, P., Panayotov, M., Popa, I., Rothe, A.,
Seftigen, K., Seim, A., Svarva, H., Svoboda, M., Thun, T., Ti-
monen, M., Touchan, R., Trotsiuk, V., Trouet, V., Walder, F.,
Wazny, T., Wilson, R., and Zang, C.: Old world megadroughts
and pluvials during the Common Era, Sci. Adv., 1, e1500561,
https://doi.org/10.1126/sciadv.1500561, 2015.

Davis, M. E., Thompson, L. G., Yao, T., and Wang, N.: Forcing of
the Asian monsoon on the Tibetan Plateau: Evidence from high-
resolution ice core and tropical coral records, J. Geophys. Res.,
110, D04101, https://doi.org/10.1029/2004JD004933, 2005.

Debret, M., Bout-Roumazeilles, V., Grousset, F., Desmet, M., Mc-
Manus, J. F., Massei, N., Sebag, D., Petit, J.-R., Copard, Y.,
and Trentesaux, A.: The origin of the 1500-year climate cy-
cles in Holocene North-Atlantic records, Clim. Past, 3, 569–575,
https://doi.org/10.5194/cp-3-569-2007, 2007.

Debret, M., Sebag, D., Costra, X., Massei, N., Petit, J.-R.,
Chapron, E., and Bout-Roumazeilles, V.: Evidence from
wavelet analysis for a mid-Holocene transition in global
climate forcing, Quaternary Sci. Rev., 28, 2675–2688,
https://doi.org/10.1016/j.quascirev.2009.06.005, 2009.

Doherty, S. J., Grenfell, T. C., Forsström, Hagg, D. L., Brandt,
R. E., and Warren, S. G.: Observed vertical redistribution
of black carbon and other insoluble light-absorbing particles
in melting snow, J. Geophys. Res.-Atmos., 118, 5553–5569,
https://doi.org/10.1002/jgrd.50235, 2013.

Echalar, F., Gaudichet, A., Cachier, H., and Artaxo, P.: Aerosol
emissions by tropical forest and savanna biomass burning: char-
acteristic trace elements and fluxes, Geophys. Res. Lett., 22,
3039–3042, https://doi.org/10.1029/95GL03170, 1995.

Atmos. Chem. Phys., 21, 5615–5633, 2021 https://doi.org/10.5194/acp-21-5615-2021

https://doi.org/10.1029/2010GL044843
https://doi.org/10.1029/2011JD016722
https://doi.org/10.1007/978-3-540-77381-8_11
https://doi.org/10.1007/978-3-540-77381-8_11
https://www.ncdc.noaa.gov/paleo-search/study/32952
https://www.ncdc.noaa.gov/paleo-search/study/32952
https://doi.org/10.5194/acp-10-7515-2010
https://doi.org/10.5194/acp-10-7515-2010
https://doi.org/10.1029/2003JD003697
https://doi.org/10.1029/2006GB002840
https://doi.org/10.1002/jgrd.50171
https://doi.org/10.1007/s10874-011-9202-5
https://doi.org/10.3126/jie.v8i3.5930
https://doi.org/10.5194/acp-18-12859-2018
https://doi.org/10.1029/2009GL040882
https://doi.org/10.1126/science.1185188
https://doi.org/10.1126/sciadv.1500561
https://doi.org/10.1029/2004JD004933
https://doi.org/10.5194/cp-3-569-2007
https://doi.org/10.1016/j.quascirev.2009.06.005
https://doi.org/10.1002/jgrd.50235
https://doi.org/10.1029/95GL03170


J. D. Barker et al.: Drought-induced biomass burning as a source of black carbon 5631

Feliks, Y., Ghil, M., and Robertson, A. W.: The atmospheric circula-
tion over the North Atlantic as induced by the SST field, J. Clim.,
24, 522–542, https://doi.org/10.1175/2010JCLI3859.1, 2011.

Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch,
P. J.: Present day climate forcing and response from
black carbon in snow, J. Geophys. Res., 112, D11202,
https://doi.org/10.1029/2006JD008003, 2007.

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., D.
W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J.,
Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.: Changes
in Atmospheric Constituents and in Radiative Forcing, in: Cli-
mate Change 2007: The Physical Science Basis. Contribution of
Working Group I to the Fourth Assessment Report of the Inter-
governmental Panel on Climate Change, edited by: Solomon, S.,
Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tig-
nor, M., and Miller, H. L., Cambridge University Press, Cam-
bridge, United Kingdom and New York, USA., 131–234, ISBN
978-0521-70596-7, 2007.

Gabrielli, P., Wegner, A., Sierra Hernández, R., Beaudon, E.,
Davis, M., Barker, J. D., and Thompson, L. G., Early con-
tamination of the Himalayan atmosphere from coal combus-
tion since the onset of the European Industrial Revolution
(∼ 1780 A.D.), P. Natl. Acad. Sci. USA, 117, 3967–3973,
https://doi.org/10.1073/pnas.1910485117, 2020.

Gaudichet, A., Echalar, F., Chatenet, B., Quisefit, J. P., and
Malingre, G.: Trace elements in tropical African savanna
biomass burning aerosols, J. Atmos. Chem., 22, 19–39,
https://doi.org/10.1007/BF00708179, 1995.

Gertler, C. G., Puppala, S. P., Panday, A., Stumm,
D., and Shea, J.: Black carbon and the Himalayan
cryosphere: A review, Atmos. Environ., 125, 404–417,
https://doi.org/10.1016/j.atmosenv.2015.08.078, 2016.

Gilardoni, S., and Fuzzi, S.: Chemical composition of aerosols
of different origin, in: Atmosphereic Aerosols: Life Cy-
cles and Effects of Air Quality and Climate, edited by:
Tomasi, C., Fuzzi, S., and Kokhanovsky, A., Wiley-
VCH Verlag GmbH & Co. KGaA, Weinheim, 183–221,
https://doi.org/10.1002/9783527336449.ch4, 2017.

Ginot, P., Dumont, M., Lim, S., Patris, N., Taupin, J.-D., Wagnon,
P., Gilbert, A., Arnaud, Y., Marinoni, A., Bonasoni, P., and
Laj, P.: A 10 year record of black carbon and dust from a
Mera Peak ice core (Nepal): variability and potential impact on
melting of Himalayan glaciers, The Cryosphere, 8, 1479–1496,
https://doi.org/10.5194/tc-8-1479-2014, 2014.

Gregory, J. M. and Oerlemans, J.: Simulated future sea-level
rise due to glacier melt based on regionally and season-
ally resolved temperature changes, Nature, 391, 474–476,
https://doi.org/10.1038/35119, 1998.

Hammes, K., Schmidt, M. W. I., Smernik, R. J., Currie, L. A., Ball,
W. P., Nguyen, T. H., Louchouarn, P., Houel, S., Gustafsson,
Ö., Elmquist, M., Cornelissen, G., Skjemstad, J. O., Masiello,
C. A., Song, J., Peng, P., Mitra, S., Dunn, J. C., Hatcher, P.
G., Hockaday, W. C., Smith, D. M., Hartkopf-Fröder, C., Böh-
mer, A., Lüer, B., Huebert, B. J., Amelung,W., Brodowski,
S., Huang, L., Zhang, W., Gschwend, P. M., Flores-Cervantes,
D. X., Largeau, C., Rouzaud, J., Rumpel, C., Guggenberger,
G., Kaiser, K., Rodionov, A., Gonzalez-Vila, F. J., Gonzalez-
Perez, J. A., de la Rosa, J. M., Manning, D. A. C., López-
Capél, E., and Ding, L.:, Comparison of quantification meth-

ods to measure fire-derived (black/elemental) carbon in soils
and sediments using reference materials from soil, water, sedi-
ment and the atmosphere, Global Biogeochem. Cy., 21, GB3016,
https://doi.org/10.1029/2006GB002914, 2007.

Hansen, J. and Nazarenko, L.: Soot climate forcing via snow
and ice albedos, P. Natl. Acad. Sci. USA, 101, 423–428,
https://doi.org/10.1073/pnas.2237157100, 2004.

Hill, A. F., Rittger, K., Dendup, T., Tshering, D., and Painter, T.
H.: How important is meltwater to the Chamkhar Chhu head-
waters of the Brahmaputra River?, Front. Earth Sci., 8, 81,
https://doi.org/10.3389/feart.2020.00081, 2020.

Immerzeel, W. W., van Beek, L. P. H., and Bioerkens, M. F. P.: Cli-
mate change will affect the Asian water towers, Science, 328,
1382–1385, https://doi.org/10.1126/science.1183188, 2010.

IPCC: Climate Change 2013: The Physical Science Basis, Contribu-
tion of Working Group I to the Fifth Assessment Report of the In-
tergovernmental Panel on Climate Change, edited by: Stocker, T.
F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A.
Nauels, Y. Xia, V. Bex, and P. M. Midgley, Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA,
1535 pp., https://doi.org/10.1017/CBO9781107415324, 2013.

Jacobson, M. Z.: Climate response of fossil fuel and bio-
fuel soot, accounting for soot’s feedback to snow and sea
ice albedo and emissivity, J. Geophys. Res., 109, D21201,
https://doi.org/10.1029/2004JD004945, 2004.

Jenkins, M., Kaspari, S., Kang, S.-C., Grigholm, B., and Mayewski,
P. A.: Tibetan Plateau Geladaindong black carbon ice core record
(1843-1982): Recent increases due to higher emissions and
lower snow accumulation, Adv. Clim. Change Res., 7, 132–138,
https://doi.org/10.1016/j.accre.2016.07.002, 2016.

Kaspari, S. D., Schwikowski, M., Gysel, M., Flanner, M. G.,
Kang, S., Hou, S., and Mayewski, P. A.: Recent increase
in black carbon concentrations from a Mt. Everest ice core
spanning 1860–2000 AD, Geophys. Res. Lett., 38, L04703,
https://doi.org/10.1029/2010GL046096, 2011.

Kaspari, S., Painter, T. H., Gysel, M., Skiles, S. M., and
Schwikowski, M.: Seasonal and elevational variations of black
carbon and dust in snow and ice in the Solu-Khumbu, Nepal
and estimated radiative forcings, Atmos. Chem. Phys., 14, 8089–
8103, https://doi.org/10.5194/acp-14-8089-2014, 2014.

Kopacz, M., Mauzerall, D. L., Wang, J., Leibensperger, E.
M., Henze, D. K., and Singh, K.: Origin and radia-
tive forcing of black carbon transported to the Himalayas
and Tibetan Plateau, Atmos. Chem. Phys., 11, 2837–2852,
https://doi.org/10.5194/acp-11-2837-2011, 2011.

Kumar, R., Barth, M. C., Pfister, G. G., Nair, V. S., Ghude, S. D.,
and Ojha, N.: What controls the seasonal cycle of black carbon
aerosols in India?, J. Geophys. Res.-Atmos., 120, 7788-7812,
https://doi.org/10.1002/2015JD023298, 2015.

Lack, D. A., Moosmüller, H., McMeeking, G. R., Chakrabarty, R.
K., and Baumgardner, D.: Characterizing elemental, equivalent
black, and refractory black carbon aerosol particles: a review
of techniques, their limitations and uncertainties, Anal. Bioanal.
Chem., 406, 99–122, https://doi.org/10.1007/s00216-013-7402-
3, 2014.

Lau, W. K. M. and Kim, K. M.: Fingerprinting the impacts
of aerosols on long-term trends of the Indian summer mon-
soon regional rainfall, Geophys. Res. Lett., 37, L16705,
https://doi.org/10.1029/2010GL043255, 2010.

https://doi.org/10.5194/acp-21-5615-2021 Atmos. Chem. Phys., 21, 5615–5633, 2021

https://doi.org/10.1175/2010JCLI3859.1
https://doi.org/10.1029/2006JD008003
https://doi.org/10.1073/pnas.1910485117
https://doi.org/10.1007/BF00708179
https://doi.org/10.1016/j.atmosenv.2015.08.078
https://doi.org/10.1002/9783527336449.ch4
https://doi.org/10.5194/tc-8-1479-2014
https://doi.org/10.1038/35119
https://doi.org/10.1029/2006GB002914
https://doi.org/10.1073/pnas.2237157100
https://doi.org/10.3389/feart.2020.00081
https://doi.org/10.1126/science.1183188
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1029/2004JD004945
https://doi.org/10.1016/j.accre.2016.07.002
https://doi.org/10.1029/2010GL046096
https://doi.org/10.5194/acp-14-8089-2014
https://doi.org/10.5194/acp-11-2837-2011
https://doi.org/10.1002/2015JD023298
https://doi.org/10.1007/s00216-013-7402-3
https://doi.org/10.1007/s00216-013-7402-3
https://doi.org/10.1029/2010GL043255


5632 J. D. Barker et al.: Drought-induced biomass burning as a source of black carbon

Lee, Y. H., Lamarque, J.-F., Flanner, M. G., Jiao, C., Shindell,
D. T., Berntsen, T., Bisiaux, M. M., Cao, J., Collins, W. J.,
Curran, M., Edwards, R., Faluvegi, G., Ghan, S., Horowitz,
L. W., McConnell, J. R., Ming, J., Myhre, G., Nagashima,
T., Naik, V., Rumbold, S. T., Skeie, R. B., Sudo, K., Take-
mura, T., Thevenon, F., Xu, B., and Yoon, J.-H.: Evaluation of
preindustrial to present-day black carbon and its albedo forcing
from Atmospheric Chemistry and Climate Model Intercompar-
ison Project (ACCMIP), Atmos. Chem. Phys., 13, 2607–2634,
https://doi.org/10.5194/acp-13-2607-2013, 2013.

Lelieveld, J., Bourtsoukidis, E., Bruhl, C., Fischer, H., Fuchs, H.,
Harder, H., Hofzumahaus, A., Holland, F., Marno, D., Neumaier,
M., Pozzer, A., Schlager, H., Williams, J., Zahn, A., and Ziereis,
H.: The South Asian monsoon – pollution pump and purifier,
Science, 361, 270–273, https://doi.org/10.1126/science.aar2501,
2018.

Li, S., Yao, T., Tian, L., and Wang, P.: Seasonal transi-
tion characteristics of the westerly jet: Study based on field
observations at an altitude of 6900 m on the Mt. Xixia-
bangma Dasuopu glacier, Chinese Sci. Bull., 56, 1912–1920,
https://doi.org/10.1007/s11434-011-4508-x, 2011.

Lindberg, J. D., Douglass, R. E., and Garvey, D. M.: Atmospheric
particulate absorption and black carbon measurement, Appl.
Optics, 38, 2369–2376, https://doi.org/10.1364/AO.38.002369,
1999.

Liu, X., Xu, B., Yao, T., Wang, N., and Wu, G.: Car-
bonaceous particles in Muztagh Ata ice core, west Kun-
lun mountains, China, Chinese Sci. Bull., 53, 3379–3386,
https://doi.org/10.1007/s11434-008-0294-5, 2008.

Lund, M. T., Samset, B. H., Skeie, R. B., Watson-Parris, D.,
Katich, J. M., Schwarz, J. P., and Weinzierl, B.: Short black
carbon lifetime inferred from a global set of aircraft ob-
servations, NPJ Climate and Atmospheric Science, 1, 31,
https://doi.org/10.1038/s41612-018-0040-x, 2018.

Marinoni, A., Cristofanelli, P., Laj, P., Duchi, R., Calzolari, F.,
Decesari, S., Sellegri, K., Vuillermoz, E., Verza, G. P., Villani, P.,
and Bonasoni, P.: Aerosol mass and black carbon concentrations,
a two year record at NCO-P (5079 m, Southern Himalayas), At-
mos. Chem. Phys., 10, 8551–8562, https://doi.org/10.5194/acp-
10-8551-2010, 2010.

Marinoni, A., Cristofanelli, P., Laj, P., Duchi, R., Putero, D, Cal-
zolari, F., Landi, T. C., Vuillermoz, E., Maione, M., and Bona-
soni, P.: High black carbon and ozone concentrations during pol-
lution transport in the Himalayas: five years of continuous obser-
vations at NCO-P global GAW station, J. Environ. Sci. (China),
25, 1618–1625, https://doi.org/10.1016/S1001-0742(12)60242-
3, 2013.

Menking, J. A.: Black carbon measurement of snow and ice us-
ing the single particle soot photometer: Method development and
an AD 1852-1999 record of atmospheric black carbon from a
Mount Logan ice core. MS thesis, Central Washington Univer-
sity, Ellensburg, WA, https://digitalcommons.cwu.edu/etd/1447
(last access: 7 April 2021), 2013.

Ming, J., Cachier, H., Xiao, C., Qin, D., Kang, S., Hou, S., and
Xu, J.: Black carbon record based on a shallow Himalayan ice
core and its climatic implications, Atmos. Chem. Phys., 8, 1343–
1352, https://doi.org/10.5194/acp-8-1343-2008, 2008.

Ming, J., Du, Z., Xiao, C., Xu, X., and Zhang, D.: Darkening of
the mid-Himalaya glaciers since 2000 and the potential causes,

Environ. Res. Lett., 7, 014021, https://doi.org/10.1088/1748-
9326/7/1/014021, 2012.

Mishra, V., Tiwari, A. D., Aadhar, S., Shah, R., Xiao, M.,
Pai, D. S., and Lettenmaier, D.: Drought and famine in
India, 1870–2016, Geophys. Res. Lett., 46, 2075–2083,
https://doi.org/10.1029/2018GL081477, 2019.

Montanari, L., Basu, B., Spagnoli, A., and Broderick, B. M.: A
padding method to reduce edge effects for enhanced damage
identification using wavelet analysis, Mech. Syst. Signal Pr.,
52–52, 264–277, https://doi.org/10.1016/j.ymssp.2014.06.014,
2015.

Mooley, D. A., Parthasarathy, B., Sontakke, N. A., and
Munot, A. A.: Annual rain-water over India, its variabil-
ity and impact on the economy, J. Climatol., 1, 167–186,
https://doi.org/10.1002/joc.3370010206, 1981.

Nair, V. S., Babu, S. S., Moorthy, K. K., Sharma, A. K.,
Marinoni, A., and Ayai: Black carbon aerosols over the Hi-
malayas: direct and surface albedo forcing, Tellus B, 65, 1–14,
https://doi.org/10.3402/tellusb.v65i0.19738, 2013.

Negi, P. S., Pandey, C. P., and Singh, N.: Black carbon aerosol
in the ambient air of Gangotri Glacier valley of north-
western Himalaya in India, Atmos. Environ., 214, 116879,
https://doi.org/10.1016/j.atmosenv.2019.116879, 2019.

Niu, H., Kang, S., Shi, X., Paudyal, R., He, Y., Li, G., Wang, S.,
Pu, T., and Shi, X.: In-situ measurements of light-absorbing im-
putities in snow of glacier on Mt. Yulong and implications for
radiative forcing estimates, Sci. Total Environ., 581–582, 848–
856, https://doi.org/10.1016/j.scitotenv.2017.01.032, 2017.

Novakov, T., Ramanathan, V., Hansen, J. E., Kirchstetter, T. W.,
Sato, M., Sinton, J. E., and Sathaye, J. A., Large historical
changes of fossil-fuel black carbon aerosols, Geophys. Res. Lett.,
30, 1324, https://doi.org/10.1029/2002GL016345, 2003.

Ogren, J. A., and Charlson, R. J.: Elemental carbon in the
atmosphere: cycle and lifetime, Tellus B, 35, 241–254,
https://doi.org/10.1111/j.1600-0889.1983.tb00027.x, 1983.

Parthasarathy, B., Sontakke, N. A., Monot, A. A., and
Kothawale, D. R.: Droughts/floods in the summer mon-
soon season over different meteorological subdivisions of
India for the period 1871–1984, Int. J. Climatol., 7, 57–70,
https://doi.org/10.1002/joc.3370070106, 1987.

Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Bal-
tensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sug-
imoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Rec-
ommendations for reporting ”black carbon” measurements, At-
mos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-
13-8365-2013, 2013.

Rahaman, W., Chatterjee, S., Ejaz, T., and Thamban, M.: Increased
influence of ENSO on Antarctic temperature since the Industrial
Era, Sci. Rep.-UK, 9, 6006, https://doi.org/10.1038/s41598-019-
42499-x, 2019.

Ramanathan, V. and Carmichael, G.: Global and regional cli-
mate changes due to black carbon, Nat. Geosci., 1, 221–227,
https://doi.org/10.1038/ngeo156, 2008.

Ramanathan, V., Ramana, M. V., Roberts, G., Kim, D., Corrigan,
C., Chung, C., and Winker, D.: Warming trends in Asia am-
plified by brown cloud solar absorption, Nature, 448, 575–578,
https://doi.org/10.1038/nature06019, 2007.

Atmos. Chem. Phys., 21, 5615–5633, 2021 https://doi.org/10.5194/acp-21-5615-2021

https://doi.org/10.5194/acp-13-2607-2013
https://doi.org/10.1126/science.aar2501
https://doi.org/10.1007/s11434-011-4508-x
https://doi.org/10.1364/AO.38.002369
https://doi.org/10.1007/s11434-008-0294-5
https://doi.org/10.1038/s41612-018-0040-x
https://doi.org/10.5194/acp-10-8551-2010
https://doi.org/10.5194/acp-10-8551-2010
https://doi.org/10.1016/S1001-0742(12)60242-3
https://doi.org/10.1016/S1001-0742(12)60242-3
https://digitalcommons.cwu.edu/etd/1447
https://doi.org/10.5194/acp-8-1343-2008
https://doi.org/10.1088/1748-9326/7/1/014021
https://doi.org/10.1088/1748-9326/7/1/014021
https://doi.org/10.1029/2018GL081477
https://doi.org/10.1016/j.ymssp.2014.06.014
https://doi.org/10.1002/joc.3370010206
https://doi.org/10.3402/tellusb.v65i0.19738
https://doi.org/10.1016/j.atmosenv.2019.116879
https://doi.org/10.1016/j.scitotenv.2017.01.032
https://doi.org/10.1029/2002GL016345
https://doi.org/10.1111/j.1600-0889.1983.tb00027.x
https://doi.org/10.1002/joc.3370070106
https://doi.org/10.5194/acp-13-8365-2013
https://doi.org/10.5194/acp-13-8365-2013
https://doi.org/10.1038/s41598-019-42499-x
https://doi.org/10.1038/s41598-019-42499-x
https://doi.org/10.1038/ngeo156
https://doi.org/10.1038/nature06019


J. D. Barker et al.: Drought-induced biomass burning as a source of black carbon 5633

Raper, S. C. B. and Braithwaite, R. J.: Low sea level rise projections
from mountain glaciers and icecaps under global warming, Na-
ture, 439, 311–313, https://doi.org/10.1038/nature04448, 2006.

Reddy, M. S. and Boucher, O.: A study of the global
cycle of carbonaceous aerosols in the LMDZT gen-
eral circulation model, J. Geophys. Res., 109, D14202,
https://doi.org/10.1029/2003JD004048, 2004.

Reddy, M. S. and Boucher, O.: Climate impact of black carbon emit-
ted from energy consumption in the world’s regions, Geophys.
Res. Let., 34, L11802, https://doi.org/10.1029/2006GL028904,
2007.

Ross, A. B., Jones, J. M., Chaiklangmuang, S., Pourkashanian, M.,
Williams, A., Kubica, K., Andersson, J. T., Kerst, M., Danihelka,
P., and Bartle, K. D.: Measurement and prediction of the emission
of pollutants from the combustion of coa and biomass in a fixed
bed furnace, Fuel, 81, 571–582, https://doi.org/10.1016/S0016-
2361(01)00157-0, 2002.

Samset, B. H., Myhre, G., Herber, A., Kondo, Y., Li, S.-M., Moteki,
N., Koike, M., Oshima, N., Schwarz, J. P., Balkanski, Y., Bauer,
S. E., Bellouin, N., Berntsen, T. K., Bian, H., Chin, M., Diehl, T.,
Easter, R. C., Ghan, S. J., Iversen, T., Kirkevåg, A., Lamarque, J.-
F., Lin, G., Liu, X., Penner, J. E., Schulz, M., Seland, Ø., Skeie,
R. B., Stier, P., Takemura, T., Tsigaridis, K., and Zhang, K.: Mod-
elled black carbon radiative forcing and atmospheric lifetime in
AeroCom Phase II constrained by aircraft observations, Atmos.
Chem. Phys., 14, 12465–12477, https://doi.org/10.5194/acp-14-
12465-2014, 2014.

Samsonov, Y. N., Ivanov, V. A., McRae, D. J., and Baker, S. P.:
Chemical and dispersal characteristics of particulate emissions
from forest fires in Siberia, Int. J. Wildland Fire, 21, 818–827,
https://doi.org/10.1071/WF11038, 2012.

Schwarz, J. P., Gao, R. S., Fahey, D. W., Thomson, D. S., Watts,
L. A., Wilson, J. C., Reeves, J. M., Darbeheshti, M., Baum-
gardner, D. G., Kok, G. L., Chung, S. H., Schulz, M., Hen-
dricks, J., Lauer, A., Karcher, B., Slowik, J. G., Rosenlof, K.
H., Thompson, T. L., Langford, A. O., Loewenstein, M., and
Aikin, K. C.: Single-particle measurements of midlatitude black
carbon and light-scattering aerosols from the boundary layer to
the lower stratosphere, J. Geophys. Res.-Atmos., 111, D16207,
https://doi.org/10.1029/2006JD007076, 2006.

Scott, C. A., Zhang, F., Mukherji, A., Immerzeel, W., Mustafa,
D., and Bharati, L.: Water in the Hindu Kush Himalaya,
in: The Hindu Kush Himalaya Assessment, edited by:
Wester, P., Mishra, A., and Shrestha, A., Springer, Cham,
https://doi.org/10.1007/978-3-319-92288-1_8, 2019.

Solanki, R. and Singh, N.: LiDAR observations of the vertical
distribution of aerosols in free troposphere: Comparison with
CALIPSO level-2 data over central Himalayas, Atmos. Environ.,
99, 227–238, https://doi.org/10.1016/j.atmosenv.2014.09.083,
2014.

Stothers, R. B.: The great Tambora eruption in
1815 and its aftermath, Science, 224, 1191–1198,
https://doi.org/10.1126/science.224.4654.1191, 1984.

Su, H., Liu, Q., and Li, J.: Alleviating border effects
in wavelet transforms for nonlinear time-varying sig-
nal analysis, Adv. Electr. Comput. En., 11, 55–60,
https://doi.org/10.4316/AECE.2011.03009, 2011.

Thapa, U. K., St. George, S., Kharal, D. K., and Gaire,
N. P.: Tree growth across the Nepal Himalaya during
the last four centuries, Prog. Phys. Geog., 41, 478–495,
https://doi.org/10.1177/0309133317714247, 2017.

Thind, P. S., Chandel, K. K., Sharma, S. K., Mandal, T. K.,
and John, S.: Light-absorbing impurities in snow of the Indian
Western Himalayas: impact on snow albedo, radiative forcing,
and enhanced melting, Environ. Sci. Pollut. R., 26, 7566–7578,
https://doi.org/10.1007/S11356-019-04183-5, 2019.

Thompson, L. G., Yao, T., Mosley-Thompson, E., Davis,
M. E., Henderson, K. A., and Lin, P.-N.: A high-
resolution millennial record of the south Asian monsoon
from Himalayan ice cores, Science, 289, 1916–1919,
https://doi.org/10.1126/science.289.5486.1916, 2000.

Torrence, C. and Compo, G. P.: A practical
guide to wavelet analysis, Bull. Am. Meteo-
rol. Soc., 79, 61–78, https://doi.org/10.1175/1520-
0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.

Tosca, M. G., Randerson, J. T., Zender, C. S., Flanner, M. G., and
Rasch, P. J.: Do biomass burning aerosols intensify drought in
equatorial Asia during El Niño?, Atmos. Chem. Phys., 10, 3515–
3528, https://doi.org/10.5194/acp-10-3515-2010, 2010.

Uglietti, C., Gabrielli, P., Olesik, J. W., Lutton, A., and Thomp-
son, L. G.: Laerge variability of trace element mass fractions
determined by ICP-SFMS in ice core samples from world-
wide high altitude glaciers, Appl. Geochem., 47, 109–121,
https://doi.org/10.1016/j.apgeochem.2014.05.019, 2014.

Wang, M., Xu, B., Kaspari, S. D., Gleixner, G., Schwab, V. F.,
Zhao, H., Wang, H., and Yao, P.: Century-long record of black
carbon in an ice core from the Eastern Pamirs: Estimated con-
tributions from biomass burning, Atmos. Environ., 115, 79–88,
https://doi.org/10.1016/j.atmosenv.2015.05.034, 2015.

Wendl, I. A., Menking, J. A., Färber, R., Gysel, M., Kaspari, S.
D., Laborde, M. J. G., and Schwikowski, M.: Optimized method
for black carbon analysis in ice and snow using the Single
Particle Soot Photometer, Atmos. Meas. Tech., 7, 2667–2681,
https://doi.org/10.5194/amt-7-2667-2014, 2014.

Xu, B., Cao, J., Hansen, J., Yao, T., Joswia, D. R., Wang, N., Wu,
G., Wang, M., Zhao, H., Yang, W., Liu, X., and He, J.: Black soot
and the survival of Tibetan glaciers, P. Natl. Acad. Sci. USA, 106,
22114–22118, https://doi.org/10.1073/pnas.0910444106, 2009.

Xu, B., Cao, J., Joswiak, D. R., Liu, X., Zhao, H., and He, J.: Post-
depositional enrichment of black soot in snow-pack and acceler-
ated melting of Tibetan glaciers, Environ. Res. Lett., 7, 014022,
https://doi.org/10.1088/1748-9326/7/1/014022, 2012.

Yang, M., Yao, T., Wang, H., and Gou, X.: Climatic
oscillations over the past 120 kyr recorded in the
Guliya ice core, China, Quatern. Int., 154-155, 11–18,
https://doi.org/10.1016/j.quaint.2006.02.015, 2006.

Zhang, Y., Kang, S., Sprenger, M., Cong, Z., Gao, T., Li, C., Tao,
S., Li, X., Zhong, X., Xu, M., Meng, W., Neupane, B., Qin,
X., and Sillanpää, M.: Black carbon and mineral dust in snow
cover on the Tibetan Plateau, The Cryosphere, 12, 413–431,
https://doi.org/10.5194/tc-12-413-2018, 2018.

https://doi.org/10.5194/acp-21-5615-2021 Atmos. Chem. Phys., 21, 5615–5633, 2021

https://doi.org/10.1038/nature04448
https://doi.org/10.1029/2003JD004048
https://doi.org/10.1029/2006GL028904
https://doi.org/10.1016/S0016-2361(01)00157-0
https://doi.org/10.1016/S0016-2361(01)00157-0
https://doi.org/10.5194/acp-14-12465-2014
https://doi.org/10.5194/acp-14-12465-2014
https://doi.org/10.1071/WF11038
https://doi.org/10.1029/2006JD007076
https://doi.org/10.1007/978-3-319-92288-1_8
https://doi.org/10.1016/j.atmosenv.2014.09.083
https://doi.org/10.1126/science.224.4654.1191
https://doi.org/10.4316/AECE.2011.03009
https://doi.org/10.1177/0309133317714247
https://doi.org/10.1007/S11356-019-04183-5
https://doi.org/10.1126/science.289.5486.1916
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
https://doi.org/10.5194/acp-10-3515-2010
https://doi.org/10.1016/j.apgeochem.2014.05.019
https://doi.org/10.1016/j.atmosenv.2015.05.034
https://doi.org/10.5194/amt-7-2667-2014
https://doi.org/10.1073/pnas.0910444106
https://doi.org/10.1088/1748-9326/7/1/014022
https://doi.org/10.1016/j.quaint.2006.02.015
https://doi.org/10.5194/tc-12-413-2018

	Abstract
	Introduction
	Methods
	The Dasuopu ice core
	Sample preparation
	BC analysis
	Spectral analysis
	Trace element analysis
	Back-trajectory analysis

	Results
	The rBC record
	Spectral analysis
	Comparison of the rBC record with the trace element record
	Back trajectory

	Discussion
	rBC concentrations
	rBC seasonality
	Temporal variations in high rBC concentrations and regional climate
	The influence of drought and biomass burning on the rBC record
	rBC and trace metals

	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

