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ABSTRACT
Background. Viruses influence global patterns of microbial diversity and nutrient
cycles. Though viralmetagenomics (viromics), specifically targeting dsDNAviruses, has
been critical for revealing viral roles across diverse ecosystems, its analyses differ inmany
ways from those used for microbes. To date, viromics benchmarking has covered read
pre-processing, assembly, relative abundance, read mapping thresholds and diversity
estimation, but other steps would benefit from benchmarking and standardization.
Here we use in silico-generated datasets and an extensive literature survey to evaluate
and highlight how dataset composition (i.e., viromes vs bulk metagenomes) and
assembly fragmentation impact (i) viral contig identification tool, (ii) virus taxonomic
classification, and (iii) identification and curation of auxiliarymetabolic genes (AMGs).
Results. The in silico benchmarking of five commonly used virus identification tools
show that gene-content-based tools consistently performed well for long (≥3 kbp)
contigs, while k-mer- and blast-based tools were uniquely able to detect viruses from
short (≤3 kbp) contigs. Notably, however, the performance increase of k-mer- and
blast-based tools for short contigs was obtained at the cost of increased false positives
(sometimes up to ∼5% for virome and ∼75% bulk samples), particularly when
eukaryotic or mobile genetic element sequences were included in the test datasets. For
viral classification, variously sized genome fragments were assessed using gene-sharing
network analytics to quantify drop-offs in taxonomic assignments, which revealed
correct assignations ranging from∼95% (whole genomes) down to∼80% (3 kbp sized
genome fragments). A similar trend was also observed for other viral classification tools
such as VPF-class, ViPTree and VIRIDIC, suggesting that caution is warranted when
classifying short genome fragments and not full genomes. Finally, we highlight how
fragmented assemblies can lead to erroneous identification of AMGs and outline a
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best-practices workflow to curate candidate AMGs in viral genomes assembled from
metagenomes.
Conclusion. Together, these benchmarking experiments and annotation guidelines
should aid researchers seeking to best detect, classify, and characterize the myriad
viruses ‘hidden’ in diverse sequence datasets.

Subjects Bioinformatics, Ecology, Microbiology, Virology
Keywords Benchmarks, Standard operating procedure, Viruses, Viromics, Ecology

INTRODUCTION
Viruses that infect microbes play significant roles across diverse ecosystems. For example,
in marine systems, viruses are now broadly recognized to modulate biogeochemical cycles
via lysis (e.g., heterotrophic prokaryotes lysis) (Fuhrman, 1999; Wilhelm & Suttle, 1999),
alter evolutionary trajectory of coremetabolisms via horizontal gene transfer (Sullivan et al.
2006), and impact the downward flux of carbon that helps the oceans buffer us (humans)
against climate change (Guidi et al., 2016; Lara et al., 2017; Laber et al., 2018; Kaneko et al.,
2019).

Viromics (viral metagenomics) has helped further our understanding of marine
viral genomic diversity, and ecosystem roles (Mizuno et al., 2013; Anantharaman et al.,
2014; Coutinho et al., 2017; Nishimura et al., 2017a; Ahlgren et al., 2019; Haro-Moreno,
Rodriguez-Valera & López-Pérez, 2019; Ignacio-espinoza, Ahlgren & Fuhrman, 2019; Luo
et al., 2020). Ecologically, we now have global ocean catalogs approaching 200K dsDNA
viruses that have been used to provide ecological maps of community structure and drivers
(Mizuno et al., 2013; Brum et al., 2015; Roux et al., 2016; Coutinho et al., 2017; Gregory et
al., 2019), and to formally (Gregory et al., 2019) and empirically (Gregory et al., 2019;Haro-
Moreno, Rodriguez-Valera & López-Pérez, 2019) demonstrate that these viral populations
represent species. Biogeochemically, viral roles in biogeochemistry now appear more
nuanced as viruses impact biogeochemical cycling not only by lysing their microbial hosts
as has been studied for decades (Fuhrman, 1999; Wilhelm & Suttle, 1999), but also by
reprogramming cellular biogeochemical outputs either broadly through viral take-over
and infection (the ‘virocell’) or more pointedly by expressing ‘auxiliary metabolic genes’
(AMGs) during infection that alter specific metabolisms of the cell (Breitbart et al., 2007;
Lindell et al., 2007;Rosenwasser et al., 2016;Howard-Varona et al., 2020).While AMGswere
initially discovered in cultures [e.g., photosynthesis genes (Mann et al., 2003)], viromics has
drastically expanded upon these to now also include dozens of AMGs for functions across
central carbon metabolism, sugar metabolism, lipid–fatty acid metabolism, signaling,
motility, anti-oxidation, photosystem I, energy metabolism, iron–sulfur, sulfur, DNA
replication initiation, DNA repair, and nitrogen cycling (Clokie et al., 2006; Sharon et al.,
2007; Dinsdale et al., 2008; Millard et al., 2009; Wommack et al., 2015; Hurwitz, Brum &
Sullivan, 2015; Roux et al., 2016; Breitbart et al., 2018; Roitman et al., 2018; Ahlgren et al.,
2019; Gazitúa et al., 2020; Kieft et al., 2020;Mara et al., 2020).
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Beyond the oceans, viromics is also providing novel biological insights in e.g., humans
(Lim et al., 2015; Norman et al., 2015; Reyes et al., 2015; Aiemjoy et al., 2019; Clooney et al.,
2019; Fernandes et al., 2019; Gregory et al., 2020b), soils (Zablocki, Adriaenssens & Cowan,
2015; Trubl et al., 2018; Jin et al., 2019; Li et al., 2019; Santos-Medellin et al., 2020), and
extreme environments (Adriaenssens et al., 2015; Scola et al., 2017; Bäckström et al., 2019;
Zhong et al., 2020). Together these studies provide a baseline ecological understanding of
viral diversity and functions across diverse ecosystems.

Critically, however, viromics remains an emerging science frontier with methods and
standards very much in flux. To date, standardization efforts have included (i) establishing
quantitative data generationmethods (Yilmaz, Allgaier & Hugenholtz, 2010;Duhaime et al.,
2012; Hurwitz et al., 2013; Solonenko & Sullivan, 2013; Conceição-Neto et al., 2015; Roux et
al., 2017), and (ii) analytical benchmarks for read pre-processing, metagenomics assembly,
and thresholds for relative abundance, read mapping and diversity estimation (Brum et al.,
2015;Gregory et al., 2016; Roux et al., 2017). Further, though not from viral particle derived
metagenomes (viromes), related efforts have also been made to provide recommendations
for how best to analyze viruses in bulk metagenomic samples (Paez-Espino et al., 2016;
Paez-Espino et al., 2017; Dutilh et al., 2017; Emerson et al., 2018).

Here we contribute to this growing set of community-driven benchmarks and guidelines.
Specifically, we use in silico datasets that mimic viromes (specifically of dsDNA viruses)
and bulk metagenomes with varied amounts of non-virus ‘distractor’ sequences to evaluate
(i) options for viral identification, (ii) genomic fragment sizes for viral classification via
gene-sharing networks, as well as (iii) provide guidelines for best practices for the evaluation
of candidate AMGs.

MATERIAL AND METHODS
Dataset
Datasets used in this study included genomes from: (i) NCBI virus RefSeq v.203 (released
December 2020); to avoid including the same genomes used in any of the viral identification
tools and vConTACT v2, we chose only complete genomes released after May 2020 (1,213
genomes, see Table S1), (ii) Bacteria RefSeq v.203 (174,973,817 genomic scaffolds), (iii)
archaea RefSeq v.203 (2,116,989 genomic scaffolds), (iv) NCBI plasmids v.203 (1,339,171
genomes), and (iv)HumanGRCh38 as the eukaryotic dataset. All datasets were downloaded
from NCBI RefSeq, last accessed in December 2020 (the links are listed in the ‘availability
of data and materials’ section below). In addition, we also added∼142 dsDNA cyanophage
genomes to include a set of closely related genomes, as can sometimes be obtained from
viromics experiments (Table S1) (Gregory et al., 2016).

Dataset simulation
in silico simulations were adapted to benchmark the viromics pipelines for (i) virus
identification and (ii) virus classification. The overall framework of dataset simulation
strategies is shown in Fig. 1. The simulation created four randomized subsampled datasets
that were further fragmented to mimic fragmented assemblies of viromes and bulk
metagenomes for viral contig identification and classification. An in-house script was used
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Figure 1 The framework of dataset simulation strategies. First, the viral RefSeq, prokaryote, eukaryote,
and plasmid genome sequences were fragmented, from 5′ to 3′ end direction, into non-overlapping frag-
ments of different lengths, i.e., L= 500 bp, 1 kbp, 3 kbp, 5 kbp, 10 kbp, and 20 kbp fragments. Then, these
non-overlapping fragments were randomly sub-sampled to obtain simulated input datasets. For virus
identification analysis, these simulated datasets were designed to resemble mock communities with differ-
ent ratios of viral, prokaryote, eukaryote and plasmid sequences, i.e., virome_1 (10:1:0.1:0.01), virome_2
(10:1:0.01:1), bulk_1 (1:10:0.1:10), and bulk_2 (1:10:1:1). For viral classification analysis, simulated inputs
were exclusively composed of fragmented viral genomes.

Full-size DOI: 10.7717/peerj.11447/fig-1

to split eukaryotic, prokaryotic, and plasmid sequences into non-overlapping fragments of
different lengths, i.e., L= 500 bp, 1 kbp, 3 kbp, 5 kb, 10 kbp, and 20 kbp. Non-overlapping
fragments from each sequence category (viral, prokaryotic, eukaryotic, plasmid) were then
combined to reflect mock communities’ composition (see below). These mixed datasets
were used to benchmark viral contigs identification tools (Fig. 1), while benchmarking of
virus classification was performed only on fragmented sequences from viral RefSeq (Fig.
1).

Mock communities
The four mock communities (with four replicates for each dataset) were randomly
constructed to include different virus, prokaryotic, eukaryotic and plasmid sequences
in ratios (Fig. 1) that varied to represent communities enriched in viral genomes (Roux et
al., 2015), i.e., ‘virome_1 (up to 20,021 sequences; ratio, 10:1:0.1:0.001)’ and ‘virome_2 (up
to 20,021 sequences; ratio, 10:1:0.01:1)’ or cellular genomes, i.e., ‘bulk_1 (up to 270,271
sequences; ratio, 1:10:0.01:10)’ and ‘bulk_2 (up to 22,035 sequences; ratio, 1:10:1:1)’
(Fig. 1). To further investigate the potential source of errors in viral contigs identification,
we also fragmented datasets consisting only of archaea, plasmid and eukaryotes (human;
Fig. 1).

Viral contig identification
The tools used for viral identification included VirSorter (Roux et al., 2015), MetaPhinder
(Jurtz et al., 2016), MARVEL (Amgarten et al., 2018), DeepVirFinder (Ren et al., 2019),
and VIBRANT (Kieft, Zhou & Anantharaman, 2020). Different cutoffs were applied for
each of the tools, as follows, (i) we used two different versions of VirSorter, v1.0.5 and
v1.10. VirSorter v1.05 used the viromedb database, while VirSorter v1.10 included the

Pratama et al. (2021), PeerJ, DOI 10.7717/peerj.11447 4/30

https://peerj.com
https://doi.org/10.7717/peerj.11447/fig-1
http://dx.doi.org/10.7717/peerj.11447


same viromedb database, as well as the Xfam database (Emerson et al., 2018; Gregory et al.,
2019). For VirSorter (version 1.0.5 and 1.1.0; with ‘–db 2 –virome –diamond’), different
cutoffs were used and compared: either all VirSorter predictions were considered as viruses
(categories 1–6), or, only predictions of categories 1, 2, 4, and 5 was considered as viruses.
For DeepVirFinder (version 1.0), we used three score cutoffs: ≥0.7, ≥0.9 and ≥0.95 and
p-values≤ 0.05. ForMARVEL (version 0.2), two score cutoffs were used:≥70% and≥90%.
Finally, for VIBRANT we used two different versions, i.e., version 1.1.0 and version 1.2.0;
with ‘-virome’ and no ‘-virome’ setting, and MetaPhinder, default settings were used. The
performance metrics to evaluate the efficiency of each tool were:

MCC =
(TP×TN )−(FP×FN )

√
(TP+FP)(TP+FN )×(TN +FP)(TN +FN )

(1)

Where MMC is Matthews’s correlation coefficient, TP is true positive, TN is true
negative, FP is false positive, and FN is false negative. MCC values range between −1 to 1,
with 1 indicating perfect efficiency (Chicco & Jurman, 2020).

Recall =
TP

TP+FP
(2)

Where TP is true positive, and FP is false positive.

False−discovery rate=
FP

FP+TN
(3)

Where FP is false positive, and TN is true negative.

Accuracy =
TP+TN

TP+TN +FP+FN
(4)

Where TP is true positive, TN is true negative, FP is false positive, and FN is false
negative.

F1=
2TP

2TP+FP+FN
(5)

Where TP is true positive, TN is true negative, FP is false positive, and FN is false
negative.

PVV =
TP

TP+FP
(6)

Where PVV is positive predictive value, TP is true positive, TN is true negative, FP is
false positive, and FN is false negative.

Specificity =
TN

TN +FP
(7)

Where TN is true negative, and FP is false positive.

Statistical analysis
AWilcoxon test was used to compare the overall performance of viral identification, on the
basis of fragment length (with 20 kbp as a reference group), including MCC, recall, false
discovery, accuracy, F1, PVV, and specificity. The analysis was done using the R program
(https://www.r-project.org/).
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Viral classification
To evaluate the impact of fragmented assembly on a gene-sharing network-based viral
classification, we leveraged vConTACT v2 (Jang et al., 2019) and used fragmented viral
RefSeq genomes of different lengths (i.e., 500 bp, 1 kbp, 3 kbp, 5 kbp, 10 kbp, and 20
kbp) with default parameters. Furthermore, we also applied vConTACT v2 to complete
genomes as a control dataset. It is worth noting that vConTACT v2 (originally) uses
RefSeq v.85 (now has been updated to RefSeq v.99) as a reference database and manually
validated ICTV taxonomies (ICTV Master Species List v1.3- February 2018) (Jang
et al., 2019). The metrics used were those of Jang et al. (2019) including: (i) accuracy
(Acc), (ii) clustering-wise separation (Sep), (iii) the positive predictive value (PPV), (iv)
clustering-wise sensitivity (Sn), (v) cluster-wise separation (Sepcl), and (vi) complex (ICTV
taxonomy)-wise separation (Sepco). The formulas are available in Jang et al. (2019).

In addition to vConTACT v2, we also evaluated the impact of fragmented assembly
on viral classification using VPF-class (protein family based) (Pons et al., 2021), VipTree
(genome-wide similarity-based) (Nishimura et al., 2017b), and VIRIDIC (BLASTN-based)
(Moraru, Varsani & Kropinski, 2020). To evaluate the result, for VPF-class, we used
taxonomic assignation of fragments with confidence score (CS) of ≥0.2 and membership
ratio (MR) of≥0.2, that have been reported to result in 100%of accuracy (Pons et al., 2021).
For VIRIDIC and ViPTree, since no taxonomic assignation is automatically generated,
we used the similarity and distance matrices provided by these tools to evaluate their
performance on fragmented genomes, by comparing the similarity/distances obtained
from genome fragments to the ones obtained from complete genomes (Nishimura et al.,
2017b; Moraru, Varsani & Kropinski, 2020).

AMG curation analysis
Recommendations and best practices for AMG curation were based on a survey of the
recent AMG literature, including especially Roux et al. (2016), Enault et al. (2017), Breitbart
et al. (2018), Kieft et al., 2020. To illustrate the major challenges in the AMG identification
process, we usedDRAMv (Shaffer et al., 2020) to identify candidate AMGs in virus genomes
from (Emerson et al., 2018; Mara et al., 2020). The following parameters were used: AMGs
score of 1–3 and AMG flag of -M and -F. To verify the functional annotation of the
candidate AMGs, we manually checked the genomic context of the viral contigs, i.e.,
the annotation of the neighboring genes (especially the presence of viral hallmark and
viral-like genes), and the position of AMG with respect to the contig’s edge. Next, we then
manually looked for the presence of promoter/terminator regions using BPROM (Linear
discriminant function (LDF) >2.75; (Richardson & Watson, 2013), and ARNold (default
setting; (Macke et al., 2001)). Conserved regions and active sites in the protein sequences
were analyzed using PROSITE (Sigrist et al., 2013) and HHPred (Zimmermann et al., 2018)
using the PROSITE collection ofmotifs (ftp://ftp.expasy.org/databases/prosite/prosite.dat),
and PDB_mmCIF70_14_Oct (default) databases, respectively. For protein structural
similarity, we used Phyre2 (confidence >90% and 70% coverage; (Kelly et al., 2015)),
and predicted quaternary structures using SWISS-MODEL with a Global Model Quality
Estimation (GMQE) score above 0.5 (Waterhouse et al., 2018). Eventually, we selected one

Pratama et al. (2021), PeerJ, DOI 10.7717/peerj.11447 6/30

https://peerj.com
ftp://ftp.expasy.org/databases/prosite/prosite.dat
http://dx.doi.org/10.7717/peerj.11447


representative example for different typical cases of either genuine AMGs or false-positive
detections, which are visualized using genome maps drawn with EasyFig (Sullivan, Petty &
Beatson, 2011).

RESULTS AND DISCUSSION
Establishment of mock communities for in silico testing
We first benchmarked and compared strategies for identification of viruses across
different types of metagenomes. Researchers have identified viruses from virus-enriched
metagenomes (viromes), as well as bulk and/or cellular metagenomes that are typically
dominated by prokaryotic or eukaryotic sequences, all with variable representation of other
mobile elements (e.g., plasmids and transposons). We thus established mock community
datasets that included viral, prokaryotic, eukaryotic and plasmid sequences in varied ratios
to represent a diversity of datasets likely to be encountered in environmental samples
(Fig. 1).

Briefly, two mock communities represented viromes and two represented bulk
metagenomes, with ratios of virus: prokaryote: eukaryote: plasmid sequences as follows:
‘virome_1’ ratio = 10:1:0.1:0.001, ‘virome_2’ ratio = 10:1:0.01:1, ‘bulk_1’ ratio =
1:10:0.01:10 and ‘bulk_2’ ratio = 1:10:1:1 (see Methods and Materials for details, Fig.
1). Clearly benchmarking are needed for other viral types since our focus here was dsDNA
viruses. It is also worth noting that to better mimic viral populations in natural system,
we complemented RefSeq genomes by specifically adding closely related genomes to the
datasets from the only such deeply sequenced ‘reference’ dataset available (cyanophages
(Gregory et al., 2016), see Materials and Methods). To reflect the fragmented assembly
typically obtained from short-read metagenomes, we extracted random subsets of varying
length (500 bp–20 kbp) from these genomes, which were then combined at different ratios.
Importantly, for viral RefSeq dataset, we only consider recent viral genomes submitted
after May 2020, this to avoid including genomes that were used in training of any of the
tools benchmarked here.

Comparison of viral identification tools
Several bioinformatic analysis tools have been developed to identify viruses from
metagenomes (Table 1), using three major approaches: (i) similarity to known viruses,
(ii) gene content/features, and (iii) k-mer frequency (i.e., nucleotide composition). Here,
we first compared the performance of the most commonly used viral identification tools:
VirSorter (Roux et al., 2015), MetaPhinder (Jurtz et al., 2016), MARVEL (Amgarten et
al., 2018), DeepVirFinder (Ren et al., 2019), and VIBRANT (Kieft, Zhou & Anantharaman,
2020) against our suite of mock communities.We attempted to include two additional tools
PHASTER (Arndt et al., 2017), and VirMiner (Zheng et al., 2019)—but these did not scale
and were eventually not included in the test results presented here. A range of parameters
and cutoffs (see Methods and Materials for details) were used to assess the performance of
each tool across different fragment sizes (ranging 500 bp–20 kbp). Tool performance was
evaluated using the following metrics: (i) ‘efficiency’, assessed using Matthews correlation
coefficient, an overall statistic for assessing the recall and false-discovery, which this
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Table 1 The comparison of the commonly-used viral identification tools.

Tool Approach Basic mode Ability to process
modern-scale
(viral) metagenomes
scalability

Reference

VirSorter Gene-content-based tool. Features in-
clude enrichment in viral-like genes, de-
pletion in PFAM hits, enrichment in
short genes, and depletion in coding
strand changes

Permissive cutoff
category 1–6
Conservative category 1245
Setting for -virome, enable
virome decontamination
mode

Yes Roux et al. (2015)

MARVEL Gene-content-based tool. Features in-
clude average gene length, average spac-
ing between genes, density of genes, fre-
quency of strand shifts between neigh-
boring genes, ATG relative frequency,
and fraction of genes with significant hits
against the pVOGs database

Permissive cutoff ≥70%
Conservative ≥90%

Yes Amgarten et al. (2018)

VIBRANT Gene-content-based tool. Features in-
clude ratio of KEGG hits, ratio of VOG
hits, ratio of PFAM hit, as well as pres-
ence of key viral-like genes (e.g., nucle-
ases, integrase, etc.)

Default Yes Kieft et al. (2020)

MetaPhinder Integrated analysis of BLASTn hits to a,
bacteriophage database, no gene predic-
tion or amino acid-level comparison

Default Yes Jurtz et al. (2016)

DeepVirFinder K-mer based similarity to viral and host
databases, no gene prediction or amino
acid-level comparison

Permissive cutoff score
≥0.7, Medium ≥0.90,
Conservative ≥0.95, and p-
value ≤ 0.05

Yes Ren et al. (2019)

VirMiner Gene-content-based tool. Features in-
clude ratio of hits to KO, ratio of hits to
POGs, ratio of hits to PFAM, and pres-
ence of hallmark genes

Default. Web server: http:
//147.8.185.62/VirMiner/

No Zheng et al. (2019)

PHASTER Gene-content-based tool. Features in-
clude number of phage-like genes, with
additional annotation of e.g., tRNA to
better predict prophage boundaries

Default. Web server: https:
//phaster.ca

No Arndt et al. (2017)

measure (MCC) offers a more informative and truthful evaluation than accuracy and F1
score (Chicco & Jurman, 2020), (ii) recall, (iii) false-discovery rate, (iv) accuracy, (v) F1,
(vi) PVV, and (vi) specificity (see the formulas in Materials and Methods).

Overall, we found that viral contigs were better identified (increased efficiency, MCC)
as fragment sizes increased, and this was true for all tools evaluated (Fig. 2 and Figs. S1–S4,
Wilcoxon test, p-value ≤ 0.0001). However, tools based on gene content, i.e., VIBRANT,
MARVEL, and VirSorter (v1.05 and v1.10) decreased sharply in efficiency (MCC) with
input sequences ≤3 kbp and particularly ≤1 kbp (Figs. 2E–2H), whereas this decrease was
less pronounced for DeepVirFinder (k-mer based) and MetaPhinder (BLASTN based) at
these smaller size ranges (MCC values ∼0.20−0.625; Fig. 2E–2H). Notably, the trade-off
of this efficiency was a higher false-discovery that reached as much as ∼5% for virome
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Figure 2 The viral identification analysis across datasets. The viral identification analysis across
datasets. (A–D) Pie-charts of the composition of the datasets depicted the different fragment sizes of the
(i) virome_1, (ii) virome_2, (iii) bulk_1, and (iv) bulk_2. (E–H) The viral identification efficiency was
calculated as Matthew’s correlation coefficient (MCC), where 1 represents perfect efficiency, (I–L) Percent
of recall (%), and (M–P) Percent of false-discovery (%) of DeepVirFinder, MetaPhinder, MARVEL,
VIBRANT, and VirSorter. For DeepVirFinder, three cutoffs were evaluated, i.e., score ≥0.7, ≥0.9, ≥0.95,
and p-value ≤ 0.05. For MARVEL, two cutoffs were used, i.e., scores of ≥70% and ≥90%. Next, we use
two different versions of VirSorter, i.e., v1.05 and v1.10, and two cutoffs, i.e., category 1, 2, 3, 4, 5, 6 and
category 1, 2, 4, 5. The upper error bars represent the mean of the replicates.

Full-size DOI: 10.7717/peerj.11447/fig-2

and ∼80% for bulk samples in our mock communities as compared to <1% when longer
fragments were used (Fig. 2M–2P).

We next explored how permissive versus conservative parameter cutoffs impacted viral
identification based on permissive and conservative cutoffs recommended for each tool
(Roux et al., 2015; Jurtz et al., 2016; Amgarten et al., 2018; Ren et al., 2019; Kieft, Zhou &
Anantharaman, 2020) (see Materials and Methods, and Fig. 2). As expected, ‘conservative’
thresholds led to lower recall and lower false-discovery than ‘permissive’ for all tools
(Fig. 2). This illustrates the trade-off that researchers are faced with maximizing viral
identification (especially for fragment sizes ≤ 3 kbp) using ‘permissive’ cutoffs and/or
tools not based on gene content will almost always be associated with a higher rate of
false-discovery. Ultimately, the initial research question of the study has to be considered
to make the decision of which type of cutoffs to use.
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Finally, we evaluated whether false-positive detections were associated with specific types
of non-viral sequences, including other mobile genetic elements and ‘novel’ microbial
genomes. To this end, we generated datasets composed only of archaea, plasmid, or
eukaryotic sequences, and measured false-discovery rates across the viral identification
tools (Fig. S3). It is important to note however that, to our knowledge, there is currently
no ‘clean’ plasmid database that is not also containing phages/viruses’ genome. Therefore,
our benchmark is based on a cleaning based on ‘complete’ plasmid/phages, and primarily
looking at how genome fragmentation impacts the delineation of plasmid vs phage.
Most tools showed an especially high false-discovery rate for plasmid and/or eukaryotic
sequences, including VIBRANT v.1.2.0 when using the virome flag (highest in eukaryote up
to > 90% false-discovery, while other version of VIBRANT is less affected), MetaPhinder
(highest in plasmid up to >40% false-discovery), MARVEL (up to∼20% false discovery for
plasmid dataset), and VirSorter when using the virome flag (up to ∼24% false-discovery
in eukaryote datasets) (Fig. S3). This suggests the data used to train these tools may have
under-represented eukaryotic and/or plasmid sequence and highlights the importance
of including diverse non-viral sequences in a balanced training set when establishing
machine-learning based viral contig detection tools, as previously highlighted (Ponsero &
Hurwitz, 2019; Kieft, Zhou & Anantharaman, 2020). Overall, two tools stand out in terms
of maintaining the lowest false-discovery across the datasets: gene-content based VirSorter
(conservative cutoff) and MARVEL (score ≥90%).

Together these comparisons suggest that viral identification efficiency increases with
fragment length, and almost all tools are able to identify true viral contigs of 10 kbpor longer.
At length > 3 kbp, ‘gene-content based tools’ are able to maximize viral recall andminimize
false discovery at either permissive or conservative cutoffs, with VirSorter and MARVEL
performing best under conditions where ‘distractor genomes’ (e.g., eukaryote, DPANN-
archaea or plasmids) are expected to be prevalent. For researchers specifically aiming to
identify short (<3 kbp) viral genome fragments, k-mer based tools (DeepVirFinder) and
BLAST-based tool (MetaPhinder) would be the preferred choices, although while being
aware of the potential high rate of false-positive detections, especially in samples where
distractor genomes are expected to be prevalent.

Virus classification using fragmented data in gene-sharing networks
Once contigs from metagenomic assemblies are identified as viral, the next challenge a
researcher faces is to determine what kind of virus they represent. Gene-sharing network
analytics have emerged as a means to semi-automate such classification, and taxonomic
assignations forwhole genomes are robust evenwhen the network includes varying amounts
of fragmented genomes (Jang et al., 2019), but no studies have evaluated the taxonomic
assignations of fragmented genomes themselves. Because viral genomes assembled from
metagenomes are often partial, we sought to better understand how gene-sharing network
approaches would perform for metagenome-derived viral sequences at various fragment
lengths.

To answer this question, we first established a dataset of known genomes and then
fragmented it to five fragment sizes that are commonly obtained from virome assemblies
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Figure 3 Viral classification analysis. (A) Percentage of the input sequences in a vConTACT v2 cluster
and (B) Percentage of sequences assigned by VFP-class to a genus. The performance of VPF-class was cal-
culated using confidence score (CS) and membership ratio (MR) thresholds of ≥0.2 (Pons et al., 2021).

Full-size DOI: 10.7717/peerj.11447/fig-3

(Roux et al., 2017). Next, we evaluated the accuracy of taxonomic assignments for the
variously sized genome fragments against those from complete genomes. Our results
showed the percentage of sequences accurately assignable to specific viral taxa increased
with fragment length. Specifically, the percentage of sequences clustered in a vConTACT
v2 gene-sharing network increased from 61% to >80% from 3 kb to fragment to complete
genomes (Fig. 3A). This difficulty in robustly integrating short genome or genome
fragments in a gene-sharing network is further illustrated by the network topology itself,
which shows a much higher fragmentation of the network for 3 kb fragment compared to
complete genomes, accompanied by an inflated number of ‘new VCs’ and a higher number
of unclustered sequence (whether outlier, overlapping, or singleton, Fig. S5). In addition to
this lower rate of clustered sequences, short fragments also displayed a reduced percentage
of sequences assigned to the correct genus (Fig. S6) and overall lower performance across
all vConTACT v2 metrics tested (Fig. S7). This is consistent with the original vConTACT
v2 benchmark which also noted that accurate classification was challenging to achieve for
short complete genomes, i.e., genomes ≤ 5 kb (Jang et al., 2019). Hence, short fragments
(<10 kb) may not be informative enough in terms of gene content to be robustly placed in
a gene-sharing network and may artificially form ‘new’ virus clusters.

Currently, beyond vContact2, most viral classification tools such as VIRIDIC and
VipTree have also been optimized to classify full viral genomes (Nishimura et al., 2017b;
Moraru, Varsani & Kropinski, 2020). We thus sought to evaluate whether this decrease in
performance with short fragments was a specificity of gene-sharing networks or was also
observed for other taxonomic classification approaches. To test this, we performed similar
comparisons of taxonomic assignment for varying genome fragment lengths using other
viral classification tools including VipTree (genome-wide similarities-based), VIRIDIC
(BLASTN-based), and VPF-class (protein family based). The general results show that the
performance of these tools also increased with fragment size (Fig. 3B, Fig. S6, Fig. S8). For
VPF-class, the percentage of sequence with a taxonomic assignation increased from∼46%
for 3 kbp fragments to ∼82% for 20 kbp (Fig. 3B), while the percentage of sequences

Pratama et al. (2021), PeerJ, DOI 10.7717/peerj.11447 11/30

https://peerj.com
https://doi.org/10.7717/peerj.11447/fig-3
http://dx.doi.org/10.7717/peerj.11447#supp-5
http://dx.doi.org/10.7717/peerj.11447#supp-6
http://dx.doi.org/10.7717/peerj.11447#supp-7
http://dx.doi.org/10.7717/peerj.11447#supp-6
http://dx.doi.org/10.7717/peerj.11447#supp-8
http://dx.doi.org/10.7717/peerj.11447


assigned to the correct genus also increased with sequence length (Fig. S6B). For ViPTree
and VIRIDIC, an increase in performance was also observed from 3 kbp through 20 kbp
(Fig. S8). Together these results suggest genome fragmentation negatively impact virus
taxonomic classification for all common approaches, with only longer genome fragments
(≥10 kbp) providing sufficient information for an accurate and meaningful taxonomy
assignment.

Auxiliary metabolic gene or not, that is the question
As sequencing technology and assembly algorithms improve, the increasing genomic
context of uncultivated viruses provides an invaluable window into our ability to identify
novel virus-encoded auxiliary metabolic genes, or AMGs. Problematically, however, until
complete virus genomes are available, robustly identifying metabolically interesting genes
in assembled (viruses) sequences from metagenomes remains a challenge for the field
(e.g., see re-analyses of past ‘AMG’ studies in Roux et al. (2013) and Enault et al. (2017)).
There are two major challenges in AMG analysis. First, even the most highly purified virus
particlemetagenome includes some degree of cellular genomic fragments (Roux et al., 2013;
Zolfo et al., 2019). Thus, it is critical to demonstrate that any candidate AMG is indeed
virus-encoded and not derived from cellular ‘contamination’, which requires adequate
genomic context. Second, standard sequence analysis cannot always determine whether a
candidate AMG is involved in a metabolic pathway or instead associated with ‘primary’
viral functions such as genome replication or host lysis. Based upon previous work (Clokie
et al., 2006; Sharon et al., 2007; Dinsdale et al., 2008; Millard et al., 2009; Wommack et al.,
2015; Hurwitz, Brum & Sullivan, 2015; Roux et al., 2016; Breitbart et al., 2018; Roitman
et al., 2018; Ahlgren et al., 2019; Gazitúa et al., 2020; Kieft et al., 2020; Mara et al., 2020),
we propose guidelines to systematize the evaluation of candidate AMGs including: (i)
virus identification and quality assessment, (ii) AMG identification, genomic context
assessment, and functional annotation, and (iii) further investigation of putative AMGs
function (Fig. 4).

Virus identification and quality assessment
For AMG studies, we recommend using a combination of tools with strict quality thresholds
to identify high-confidence virus sequences (Fig. 4, ‘Viral contigs identification’). For
example, high-confidence sequences might be those identified by Virsorter (cat 1,2) and
VirFinder/DeepVirFinder (score ≥ 0.9, p-value < 0.05). For length of the contig, while
we have in the past used viral contigs ≥1.5 kbp for AMG detection (Hurwitz, Hallam &
Sullivan, 2013; Hurwitz, Brum & Sullivan, 2015; Roux et al., 2016), improved sequencing
and assembly capabilities offer the opportunity to be less permissive since smaller contigs
increase the risk of false positives. Currently, we recommend increasing the minimum size
threshold for AMGs work to ≥10 kbp, or those that are circular (and thus interpreted
to be complete genomes). Complementary to virus identification tools, we recommend
using ViromeQC (Zolfo et al., 2019) to evaluate virome contamination at the dataset level,
and CheckV (Nayfach et al., 2020) to identify and remove host contamination based on
gene content for individual sequences. Finally, for cases where integrated prophages are
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Figure 4 Proposed workflow and curation step for AMG identification and validation. The recom-
mend ed steps of a candidate AMGs include, (i) viral contig identification and quality assessment, (ii)
AMG identification, genomic context assessment, and functional annotation, and (iii) further investiga-
tion of putative AMGs function.

Full-size DOI: 10.7717/peerj.11447/fig-4

likely assembled in a contig including both a host and a viral region, we recommend
using prophage-specialized tools such as PHASTER (Arndt et al., 2017) for more refined
prophage/provirus identification and boundary demarcation.

You are confident you have a virus sequence, but does it include any
candidate AMGs?
Next, candidate AMGs must be identified within the selected high-confidence viral contigs
(Fig. 4 ‘‘Identification of candidate AMGs’’). The key step in this process is to correctly
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interpret results from a functional annotation pipeline to distinguish genes involved in
host metabolism from genes involved in the viral replication cycle, often based on existing
ontologies or manually defined keywords (Breitbart et al., 2018). To further refine this
candidate AMG identification, it has been proposed that metabolic genes associated with a
KEGGmetabolic pathway would constitute ‘‘Class I’’ AMGs (i.e., highest confidence) while
metabolic genes not directly included in a metabolic pathway (e.g., transport function)
would represent ‘‘Class II’’ AMGs (lower confidence; (Hurwitz, Brum & Sullivan, 2015)).
Importantly, depending on the definition one uses for ‘host metabolism’ vs ‘core viral
functions’, some genes currently described in the literature as AMGsmight not be legitimate
AMGs, including some nucleotide-related genes (Kieft et al., 2020) or glycosyl transferases
and glycoside hydrolases that are often used for surface attachment and entry (Shaffer et al.,
2020). We thus recommend researchers to use the utmost caution when analyzing genes
for which a true role and function remains uncertain and avoid systematically calling these
simply ‘‘AMGs’’ without further qualifiers or caveats.

While prior AMG identification has often been done using manual inspection of the
contigs functional annotation, there is opportunity now to advance towards a more
systematic and semi-scalable approach to identify AMGs, with two new automated tools
recently released. DRAM (Distilled and Refined Annotation of Metabolism), which
is optimized for microbial annotation, but includes a ‘DRAM-v’ module for viruses,
leverages expert-curated AMG databases for functional annotation and a two-component
scoring system to assess the likelihood of a gene being encoded on a virus genome
(Shaffer et al., 2020). Meanwhile VIBRANT, which is built for virus identification but
also performs functional annotation, automatically curate KEGG-based annotations to
highlight candidate AMGs associated to KEGG ‘metabolic pathways’ and ‘sulfur relay
system’ categories (Kieft et al., 2020). Both tools thus provide a quick and automated way
to obtain a list of candidate AMGs which nevertheless must be further analyzed to (i) verify
that the candidate AMG is indeed encoded by a virus, and (ii) verify that the candidate
AMG is indeed involved in a cellular metabolic pathway.

How do you recognize a candidate AMG that may not actually be
virus-encoded?
Although automated annotation tools such as DRAM-v and VIBRANT are helpful in
speeding up the identification of candidate AMG, any detailed ecological or evolutionary
analysis of an AMG requires additional manual inspection of both genomic context and
predicted functions. Here, we illustrate examples of typical ‘‘mistakes’’ made by automated
tools (Fig. 4 ‘Genomic context assessment of candidate AMGs’).

First, two examples of sequences likely to be genuinely viral, either closely related to
a known phage (contig_1, ‘likely viral’) or not (contig_2, ‘possible viral’) are presented in
Fig. 4. These sequences are mostly composed of viral or unknown genes, with little to no
‘cellular-like’ gene outside of the single candidate AMG. Next to these however, are four
examples of AMGs predicted yet unlikely to be viral (‘unlikely viral’ candidates). Contig_3
represents a sequence∼120 kbp with dense, short genes, and no viral/viral-like genes. This
sequence is likely to be a cellular genomic region, possibly a mobile genetic element, that
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could easily be mistaken for a phage by automated tools. Next in contig_4, the candidate
AMG is surrounded by genes that reveal little evidence of belonging to a viral genome,
but where VirSorter (categories 1 and 2) and/or VirFinder (score ≥ 0.9 and p-value <
0.05) suggest the contig overall is of viral origin. Conservatively, these genes AMGs should
not be considered further due to the low contextual evidence of the region immediately
surrounding the candidate AMG to be of viral origin. Finally, in contig_5, the candidate
AMG is at the edge of the viral contig along with a tRNA and a phage integrase. This
example likely represents the miscall of a prophage boundary, and the AMG-containing
region is likely a small fraction of the host genome, where metabolic genes are much more
common (Table S2). Overall, further examining the specific genomic context around each
candidate AMG is highly recommended in order to identify false-positive detections, i.e.,
non-viral sequences wrongly considered as viral by automated tools. This is especially
critical in AMG analysis because these non-viral regions, while overall rare among the
entire set of sequences predicted as viral, will typically have a much higher probability
of including genes annotated as metabolic, i.e., candidate ‘AMGs’. Hence, even a small
number of contaminating sequences can substantially impact downstream AMG analyses.

How to recognize a true metabolic AMG?
As for their viral origin (see above), the predicted function of candidate AMGs will typically
need to be refined beyond the results of automated functional annotation pipelines. While
the ideal proof of function is through biochemical assay of the AMGs to support the in
silico inferred function, this is laborious and time-consuming lab work, such that only a
handful of AMGs known to date has been experimentally validated—psbA (Lindell et al.,
2005; Clokie et al., 2006), pebS (Dammeyer et al., 2008), and glycoside hydrolase (Emerson
et al., 2018). To provide scalable in silico evaluation of putative AMGs and guide future
experimental validation, we recommend the following analyses (Fig. 4 ‘AMG functional
analysis’).

First, deeper functional analyses should be conducted to assess, where possible,
whether the AMG contains known conserved residues and active sites, as well as whether
structural predictions are consistent with the sequence-based functional prediction (Fig.
4). The analysis of protein conserved regions and active sites can be done manually via
inspection of sequence alignments, as well as semi-automatedly where possible using,
e.g., PROSITE (Sigrist et al., 2013) and HHPred (Zimmermann et al., 2018). For protein
structural predictions there are several available tools including Phyre2 (Kelly et al.,
2015), SWISS-MODEL (Waterhouse et al., 2018), and I-TASSER (Yang & Zhang, 2015).
Protein structure is known to be more conserved than primary protein sequence, thus
enabling the annotation of more divergent proteins, as well as supporting other functional
annotation pipelines (Kelly et al., 2015). Importantly, when interpreting results of predicted
structures and structure-based similarity for candidate AMGs, one should verify that the
predicted structure is consistent with the predicted biological function, but also consider
the relationship between top hits, in which one would expect to have several of the top hits
homologous to each other (Roux et al., 2016;Gazitúa et al., 2020). The latest recommended
cutoffs for these functional annotation tools are provided in Table 2.
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Table 2 Auxiliary metabolic genes (AMGs) curation guidelines.

Parameters Analysis program cutoffa Note Reference

Viral assembled contig quality
assessment

CheckV Complete viral contigs – Nayfach et al. (2020)

ViromeQC Default – Zolfo et al. (2019)
AMG identification VIBRANT Default – Kieft et al. (2020)

DRAM-v Default Putative AMG criteria: AMG score
1–3, and -M and -F flag.

Shaffer et al. (2020)

Conserved residues and active
sites

PROSITE Default PROSITE collection of motifs (ftp:
//ftp.expasy.org/databases/prosite/
prosite.dat) database

Sigrist et al. (2013)

HHPred Default database: PDB_mmCIF70_23_Jul Zimmermann et al. (2018)
BPROM Linear discriminant function

(LDF) > 2.75
Bacteria σ -70 Promoters. In
intergenic region or within 10 bp
of start or stop of ORF

Richardson & Watson (2013)

TransTermHP Confidence score > 90% Terminators search Kingsford, Ayanbule & Salzberg
(2007)

ARNold Default Terminators search (Macke et al., 2001)
Protein structural Phyre2 100% confident and ≥70%

alignment coverage
Secondary and tertiary structure
search

Kelly et al. (2015)

SWISS-MODEL Global Model Quality Estimation
(GMQE) score above 0.5

Quaternary structure Waterhouse et al. (2018)

I-TASSER Default Protein structural Yang & Zhang (2015)
TMHMM Default Transmembrane domain Krogh et al. (2001)

Synonymous and non-
synonymous mutation

MetaPop <0.3 represent strong purifying
selection

Calculate the pN/pS Schloissnig et al. (2013) and
Gregory et al. (2020b))

Notes.
aThe recommendation cutoffs that can be used in each step of AMGs curation.
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Evolutionary analyses can be used to assess whether selection appears to be acting on
the viral gene homolog. For instance, the ratio of non-synonymous (p N) to synonymous
polymorphisms (pS)—known as pN/pS—can be used to evaluate whether the candidate
AMGs is under purifying selection as would be expected for a functional gene (Schloissnig et
al., 2013; Roux et al., 2016). Pragmatically, pN/pS values can be calculated manually using
tools designed specifically for analyzing micro- and macro-diversity in metagenomes (e.g.,
MetaPop; Gregory et al., 2020a).

Your AMG appears viral and predicted to be functional and involved in host
cell metabolism, what is its ecological and evolutionary story to tell?
Until this point, the candidate AMGs have gone through a series of meticulous vetting steps
resulting in putative AMGs that can be used for downstream analyses such as phylogeny,
ecological analysis, and experimental functional assays. We provide recommendations for
each as follows (Fig. 4 ‘‘Additional (optional) analysis of the putative AMGs’’).

To assess the evolutionary history of AMGs, phylogenetic analysis is carried out on
individual AMGs and their corresponding microbial homologs. Briefly, for each AMG,
one first needs to obtain homologs via sequence similarity searches (e.g., BLAST vs an
appropriate database), then do multiple sequence alignments (e.g., MAFFT (Katoh et al.,
2002), assess for intragenic recombination (e.g., RDP4 software (Martin et al., 2015)), build
phylogenetic trees (e.g., IQ-TREE (Nguyen et al., 2015), and visualize them (e.g., iTOL,
(Letunic & Bork, 2019). With these data in-hand, each phylogenetic tree can be examined
to determine the number of transfer events that have occurred between microbes and
viruses, as well as the ‘origin’ of the AMGs within the cellular and viral sequences in the
analyses (sensu (Sullivan et al., 2010)).

Bona fide AMGs also typically have an ecological story to tell. Currently, the abundance
of AMGs is estimated by read mapping against the viral populations that contain those
AMGs (Gazitúa et al., 2020). However, a more sophisticated approach, where possible,
would be to use the evolutionary inferences and multiple sequence alignments to identify
virus-specific ‘signatures’ in the sequences that could be read-mapped to differentiate viral
from cellular contributions to the gene, transcript, or protein pool in any given natural
community.While such analyses are quite rare, e.g., (Sharon et al., 2007;Tzahor et al., 2009)
growing AMG datasets should empower researchers to address this question of the virus
‘AMG’ contributions. Further, as virus-host prediction capabilities improve (Edwards et
al., 2016; Villarroel et al., 2016; Galiez et al., 2017; Emerson et al., 2018; Wang et al., 2020),
there is opportunity to combine these with AMG predictions to build understanding
of ecologically-critical nuances of virus-host interactions. Finally, viral AMGs are under
very different selective pressures than their host homologues given their viro-centric roles
during infection. Will functional validation reveal viral versions that are fundamentally
different? On one side, we may expect viral AMGs to have subtle mutations that might
impact their enzyme efficiency (e.g., mutations in the PEST domain of PsbA (Sharon et al.,
2007)) or substrate preferences (Enav et al., 2018). On the other side, we may expect viruses
to encode more efficient proteins with ‘new’ functions. An example here is cyanophage-
encoded ‘PebA’, which was thought to be a divergent 15,16-dihydrobiliverdin: ferredoxin
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oxidoreductase (pebA), but experimentally was shown to combine the capabilities of two
host enzymes, PebA and PebB, to directly convert biliverdin IXX α to phycoerythrobilin
and was thus renamed to PebS, a phycoerythrobilin synthase (Dammeyer et al., 2008).

Together, we hope these guidelines provide best-practice standard operating procedures
for scientists to identify and evaluate candidate AMGs, as well as an emerging roadmap for
how best to robustly bring this more nuanced and under-studied component of virus-host
interactions to light so that viruses can be better incorporated into ecosystem models.

CONCLUSIONS
While viromics has proven invaluable for revealing the roles of viruses across diverse
ecosystems, the emergent field of viral ecogenomics is in a state of rapid flux, experimentally
and analytically. Here, we add to recent best practices efforts by evaluating and providing
benchmarking for identifying and classifying viruses from viral-particle-enriched and bulk
metagenomes, as well as recommendations for best practices for studying virus-encoded
auxiliary metabolic genes. These efforts addressed some critical issues in standard operating
procedures for viral ecogenomics researchers. Similar efforts will be needed to establish best
practices in studying new emerging types of analysis and data including micro-diversity
of virus populations (Gregory et al., 2019), and long-read sequencing (Warwick-Dugdale
et al., 2018; Zablocki et al., 2021). Further, technological and analytical opportunities
are being developed to better capture ssDNA and RNA viruses, as well as to establish
dsDNA viral activity (Moniruzzaman et al., 2017; Emerson et al., 2018; Roux et al., 2019;
Sommers et al., 2019; Starr et al., 2019; Trubl et al., 2019; Callanan et al., 2020). Finally,
though viral discovery is now performed tens to hundreds of thousands of viruses at a
time, the ability to link these new viruses to their hosts is still limited. Improved in silico
approaches, such as those based on BLAST similarity, k-mers (such as WIsH (Galiez et al.,
2017), HostPhinder (Villarroel et al., 2016)), and VirHostMatcher (Wang et al., 2020)), and
CRISPR-Cas (Paez-Espino et al., 2016) have been recently proposed to predict the potential
hosts of uncultivated viruses, which still need to be thoroughly tested and benchmarked
across a variety of dataset types and sizes. Moreover, predictions from these in silico
prediction tools need to be complemented with robustly benchmarked, high-throughput
experimental methods, e.g., epicPCR, viral tagging, Hi-C (Deng et al., 2014; Bickhart et al.,
2019; Yaffe & Relman, 2020; Sakowski et al., 2021) to validate these predictions.

Abbreviations

MCC Matthews’s correlation coefficient
Sn clustering-wise sensitivity
PPV the positive predictive value
Acc accuracy
Sepco complex (ICTV taxonomy)-wise separation
Sepcl cluster-wise separation
Sep clustering-wise separation
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