

Journal of Geophysical Research: Atmospheres

Supporting Information for

Increased Fire Activity in Alaska since the 1980s: Evidence from an Ice Core-derived Black Carbon Record

M. Roxana Sierra-Hernández¹, Emilie Beaudon¹, Stacy E. Porter^{1,2}, Ellen Mosley-Thompson^{1,3}, Lonnie G. Thompson^{1,4}

¹Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA.

²Environmental Science Program, Wittenberg University, Springfield, OH, USA.

³Department of Geography, The Ohio State University, Columbus, OH, USA.

⁴School of Earth Sciences, The Ohio State University, Columbus, OH, USA.

Contents of this file

Table S1 and Figures S1 to S5, and Text S1.

Introduction

The supporting information includes a table and five additional figures as described in the main text. Text S1 and its corresponding figures provide a case study of atmospheric circulation patterns for 1957 and 1969, the two largest fire seasons of the 20th century.

Table S1. Annual area burned in Alaska in acres (original data) and in hectares (AICC, 2020).

(,	2020):					
Year	Acres	Hectares		Year	Acres	Hectares
1939	5,000,000	2,023,428		2002	2,183,265	883,536
1940	4,500,000	1,821,085		2003	602,718	243,911
1941	3,654,774	1,479,035		2004	6,590,140	2,666,935
1942	452,510	183,124		2005	4,649,597	1,881,625
1943	666,773	269,833		2006	266,268	107,755
1944	110,604	44,760		2007	649,411	262,807
1945	117,313	47,475		2008	103,649	41,945
1946	1.438.963	582.328		2009	2.934.608	1.187.594
1947	1,431,665	579.374		2010	1,125,419	455,441
1948	35,190	14,241		2011	293.018	118,580
1949	18,148	7.344		2012	286.888	116.099
1950	2.063.984	835.265		2013	1.316.289	532.683
1951	221,669	89,706		2014	233.849	94.635
1952	74,690	30,226		2015	5.111.453	2.068.531
1953	472,549	191,234		2016	500.949	202.727
1954	1 391 691	563 197		2017	652 904	264 221
1955	23.582	9,543		2018	411,177	166,397
1956	476 593	192 870		2019	2 585 625	1 046 365
1957	5 049 661	2 043 525	-	2010	2,000,020	1,010,000
1958	317 215	128 372				
1950	596 574	2/1 /25				
1960	87 180	35 280				
1961	5 100	2 064				
1962	38 975	15 773				
1063	16 200	6 502				
1905	3 430	1 388				
1065	7,002	2 970				
1905	672 765	2,070				
1900	100.005	272,230				
1069	1 012 201	44,113				
1900	1,013,301	410,000				
1909	4,231,020	1,712,557				
1970	1 000 100	40,920				
1971	1,009,100	432,003				
1972	900,247	391,020				
1973	662,060	24,207				
1075	107.945	200,290 51 727				
1975	60 110	27 071				
1970	2 205 808	020.081				
1977	2,293,000	929,001				
1970	200.025	3,139				
1979	309,920	157,797				
1960	129,092	32,303				
1001	JJJJJZ17	210,999				
1002	10,198	20,001				
1000	30, 104 115 971	29,120 16 201				
1085	406.420	164 476				
1096	400,423 121 200	104,470				
1900	222.066	80,867				
1088	2 153 208	871 400				
1900	2,133,230	27 702				
1909	2 1 9 0 0 7 0	1 200 574				
1990	3,109,079	662 955				
1000	1,037,930	60 70F				
1002	710 060	200,700				
1990	1 12,000 265 700	200,407 107 500				
1994	∠00,709 42 020	107,529				
1990	40,902 500,100	11,119 212 117				
1007	2 026 006	242,447				
1000	2,020,000	020,219 70 175				
1000	1 005 400	10,113				
2000	756 202	306 056				
2000	216 022	200,000 27 10F				
2001	210,032	07,420				

Figure S1. Ammonium annual concentrations from B-Ch1 and B-Ch2 shown as (a) time series between 1973 and 2001, and (b) scatter plot of their respective log concentrations.

Figure S2. Comparison of (a) annual concentrations, and their respective (b) \log concentrations of black carbon from B-Ch2 and NH₄⁺ from B-Ch1.

Figure S3. Comparison of the Bona-Churchill BC flux (black line) with BC deposition at Bona-Churchill from MERRA-2 (brown dotted line) at the top of the record between 1980 and 2001.

Figure S4. Comparison of black carbon concentrations from B-Ch2 (black line) with dust particles concentrations from B-Ch1 (brown line) from the bottom of the record between 1933 and 1960.

Figure S5. Clusters of 3- and 5-day back trajectories for Aurora Peak, Bona-Churchill, Eclipse Icefield, and Mt. Logan ice core drilling sites between 1948 and 2001 for May–August.

Text S1. Atmospheric Circulation Patterns for the 1957 and 1969 large fire years

The fire history data for Alaska are shown in this study at the statewide level. The potential of individual fires to be preserved in the Bona-Churchill black carbon (BC) and ammonium (NH₄⁺) records depends on the intensity of the fires, their proximity to the ice core drill site, and the overlying atmospheric conditions.

The two largest fire years of the 20th century in Alaska occurred in 1957 and 1969. Although 1957 was the 3rd largest fire on record, there is no discernible signal in the Bona-Churchill record. In fact, the Bona-Churchill record shows low fire activity during 1957. On the other hand, there is a distinct peak in BC and NH4⁺ coinciding with the 1969 fire season (Fig. 4). It is well known that in 1969 two large fires occurred in the Kenai Peninsula in what it is now the Kenai National Wildlife Refuge, which is near and upwind of Bona-Churchill. The proximity of the Kenai fires to the Bona-Churchill site likely contributed to the detection of the 1969 event in the BC and NH4⁺ records; however, it is unclear why no signal was recorded at Bona-Churchill during the large 1957 fire season. To test the role of the atmospheric transport conditions we analyzed the circulation patterns for these two years.

Given the high elevation of the Bona-Churchill site, upper-level (500 hPa) winds were evaluated during the peak fire season (June, July, and August) using NCEP/NCAR reanalysis (Kalnay et al., 1996). The comparison of the zonal and meridional wind patterns for these two years are shown in Figures S6 and S7.

Zonal wind patterns indicate predominant westerlies over Alaska with the exception of a narrow band of very weak westerlies or near easterlies over southern Alaska (Fig. S6). This band of easterlies may be a result of cyclones and their subsequent cyclolysis in the Gulf of Alaska. Compared to the climatology (1981-2010, Fig. S6c), the anomalies of upper-level zonal winds reveal stronger easterlies in 1957 over southern Alaska (Fig. S6d) and stronger westerlies in 1969 (Fig. S6e). Stronger westerlies in 1969 would provide conditions more conducive to the transport of fire-related aerosols from the interior of Alaska to the Bona-Churchill site in the southeast.

NCEP/NCAR Reanalysis 500 hPa Zonal Winds

Figure S6. NCEP/NCAR reanalysis 500 hPa mean zonal winds (m/s) for June, July, and August (JJA) for (a) 1957, (b) 1969, and (c) the 1981-2010 climatological period. Anomalies from the climatological mean are shown for (d) 1957 and (e) 1969.

Meridional wind patterns indicate weak southerly winds over Alaska during summer (Fig. S7a-c). In 1957, those southerly winds are stronger over western Alaska, while weak northerly winds over are observed over eastern Alaska (Fig. S7a). In 1969, weak southerly winds dominate over much of Alaska while northerly winds occur to the west (Fig. S7b). Near the Bona-Churchill drill site, the southerly component of the winds in 1969 (Figs. S7b, e) is like the 1981-2010 climatology (Fig. S7c), while in 1957, winds are predominantly from the north over the Bona-Churchill site (Fig. S7a, d). The zonal and meridional wind patterns indicate that southwesterly winds prevailed during the summer of 1969 while weak northeasterly winds occurred in the summer of 1957. These southwesterly winds would facilitate the transport of aerosols from several large fires that occurred in 1969 in southwestern Alaska and the Kenai Peninsula.

Figure S7: NCEP/NCAR reanalysis 500 hPa mean meridional winds (m/s) for June, July, and August (JJA) for (a) 1957, (b) 1969, and (c) the 1981-2010 climatological period. Anomalies from the climatological mean are shown for (d) 1957 and (e) 1969.

References

AICC (2020). Alaska Interagency Coordination Center: Alaska Fire History Chart with Data, Fort Wainwright, Alaska, USA.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-Year Reanalysis Project, *Bulletin of the American Meteorological Society*, *77*(3), 437-472, doi:10.1175/1520-0477(1996)077<0437:Tnyrp>2.0.Co;2.