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Abstract
Understanding the spatial–temporal changes in glacier mass balance and associated drivers on the Tibetan Plateau (TP) is 
important for predicting future water supplies and glacier-related hazards. However, the comparative study of changes in 
glacier mass balance in different regions of the same glacierized massif on the TP remains scarce. Combining the recon-
structed detailed mass balance time-series from 1970 to 2015 for Ningchan No.1 Glacier in the eastern Qilian Mountains 
and Qiyi Glacier in the western Qilian Mountains using the energy and mass balance model in this work with the published 
mass balance data from different glaciers, we find that interannual changes in glacier mass balance are broadly similar in 
different regions of the Qilian Mountains. These interannual changes are primarily driven by variations in ablation-season 
(June–September) air temperature (Ta), which impact albedo and melt by changing snowfall and incoming longwave radia-
tion (Lin). We link such interannual mass balance variability to the combination of changes in atmospheric circulation over 
Europe and changes in sea surface temperature (SST) in the Northwest Pacific during the ablation season which can cause 
the changes in Ta across the Qilian Mountains. In addition, we find a trend of increasingly negative glacier mass balance 
across the Qilian Mountains from 1970–1994 compared to 1995–2015. This interdecadal trend is driven by higher ablation-
season Ta through increasing Lin and through increasing precipitation falling as rain. Lastly, higher glacier mass loss in the 
east than in the west Qilian Mountains from 1970–1994 and 1995–2015 was mainly caused by lower glacier area-altitude 
distribution, as well as a reduction in ablation-season precipitation in the eastern Qilian Mountains.
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1 Introduction

The Tibetan Plateau and its surrounding areas contain the 
largest number of glaciers apart from polar regions (Yao 
et al. 2012). These glaciers can provide detailed paleo-
climatic information in the subtropics (Aizen et al. 2004; 
Thompson et al. 1989; Yao et al. 2006) and their melt-
water runoff feeds some important rivers (such as Indus, 
Amu Darya, Ganges–Brahmaputra, and Tarim) on the Asia 
(Armstrong et al. 2019; Immerzeel et al. 2020; Gao et al. 
2021; Pritchard 2019). The recent studies indicated that on 
the interdecadal timescales during the past several decades, 
glacier mass balances on the TP have undergone different 
changes: glaciers in the eastern Pamir, Karakoram, and west-
ern Kunlun regions have exhibited slight mass stability or 
even glacier advance, while most of the glaciers have had an 
accelerated shrinkage and mass loss (Azam and Srivastava 
2020; Brun et al. 2017; Barandun et al. 2015; Farinotti et al. 
2020; Fujita and Nuimura 2011; Kääb et al. 2015; Kumar 
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et al. 2019; Pan et al. 2012; Shean et al. 2020; Wang et al. 
2010, 2017; Yang et al. 2016; Yao et al. 2012; Zemp et al. 
2019; Zhou et al. 2018; Zhang et al. 2012, 2021; Zhu et al. 
2018b, 2021b). And some glaciers could almost disappear 
in some mountain ranges in this century (Zemp et al. 2019). 
These changes are believed to have a profound influence on 
the future vulnerability of water resources, glacier-related 
hazards, surrounding environments, and downstream social 
and economic development (Immerzeel et al. 2020; Kääb 
et al. 2018; Marzeion et al. 2014; Nie et al. 2021; Radić 
et al. 2014; Thompson 2000; Yao et al. 2019; Zhang et al. 
2016). Thus, understanding the climatic factors that drive 
the spatial–temporal changes in glacier mass balance on the 
TP is important.

Recent studies show that the rates of glacier mass loss on 
the southern, central, and northeastern TP, and the western 
Himalayas increased over the last several decades (Azam and 
Srivastava 2020; Kumar et al. 2019; Wang et al. 2010; Yao 
et al. 2012; Yang et al. 2016; Zhang et al. 2012). A variety 
of factors have been proposed to explain this phenomenon, 
including increased light-absorbing particles (such as black 
carbon), expanded proglacial lake, and reduced precipitation 
(Chen et al. 2020; Kang et al. 2020; Maurer et al. 2019; Yao 
et al. 2012). However, most studies thought that regional 
warming is the main reason for the increasing rates of glacier 
mass loss over the last several decades (Azam and Srivas-
tava 2020; Bhattacharya et al. 2021; Chen et al. 2020; Sun 
et al. 2018a; Yang et al. 2016; Zhang et al. 2012, 2021; Zhu 
et al. 2021a). Increased air temperature (Ta) reduces snowfall 
by increasing the precipitation falling as rain, which can 
decrease accumulation and albedo (Kumar et al. 2019; Oer-
lemans 2001; Favier et al. 2004a; Zhu et al. 2018a). Thus, 
increased Ta leads to enhanced mass loss by increasing melt 
and reducing accumulation. In addition, Ta information is 
transferred to the glacier surface mainly through incoming 
longwave radiation (Lin), which is also an important heat 
source for melt (Ohmura 2001). However, the importance of 
Lin for the interannual and interdecadal changes in mass bal-
ance for those glaciers has not been discerned due to the lack 
of long-term energy and mass balance data. Some studies 
found that Lin plays an important role in the seasonal changes 
of the melt energy for the glaciers through changing clouds 
and humidity (Sicart et al. 2005; Yang et al. 2011) and in 
the spatial distribution of melt energy of glaciers in differ-
ent regions of the TP due to different climate backgrounds 
(Zhu et al. 2018a).

In addition, increased knowledge of the spatial distribu-
tion of interdecadal changes in glacier mass balance for the 
same periods among different regions on the TP has been 
gained (Brun et al. 2017; Bhattacharya et al. 2021; Shean 
et al. 2020; Zhu et al. 2018a, 2021a; Zhou et al. 2018), how-
ever, the comparative study of changes in glacier mass bal-
ance in different regions of the same glacierized massif on 

the TP remain scarce, especially for interannual timescales. 
Maurer et al. (2019) analyzed the interdecadal changes in 
mass balance in different regions of the Himalayas. Most 
studies have applied the glacier model to study interannual 
changes in glacier mass and their drivers on the TP (Cao 
et al. 2019; Chen et al. 2020; Mölg et al. 2014; Wang et al. 
2010; Wang et al. 2017; Yang et al. 2016; Zhang et al. 2021; 
Zhu et al. 2018b, 2021b) but mainly focused on a single 
glacier or set of glaciers within the same region with similar 
climate changes. For example, Zhang et al. (2021) found 
that the July East-Atlantic index was highly correlated with 
the cumulative positive temperature and inversely related 
to the reconstructed mass balance of Shiyi Glacier in the 
central Qilian Mountains using a degree-day model through 
a zonal atmospheric teleconnection pattern. The question 
is whether these conclusions from one glacier can be used 
to explain the interannual/interdecadal changes in glacier 
mass balance across the Qilian Mountains or just in the cen-
tral Qilian Mountains. Comparison of glacier mass balance 
changes in different regions can improve our understanding 
of coordinated variations of glacier mass balance and associ-
ated regional climate variables and macro-scale atmospheric 
circulation (Favier et al. 2004a, b).

The Qilian Mountains in the northeastern TP host 2684 
individual glaciers (Sun et al. 2018a, b). The climates in 
Qilian Mountains are mainly influenced by the mid-latitude 
westerlies and East Asian monsoon, and the strengths of 
these circulations are different between the eastern and west-
ern Qilian Mountains (Wang et al. 2010; Yao et al. 2012, 
2013). Those glaciers are rapidly retreating across all regions 
(Neckel et al. 2014; Pan et al. 2012; Shean et al. 2020; Sun 
et al. 2018a; Yao et al. 2012) but are doing so much faster 
in the eastern Qilian Mountains compared to the central-
western region (He et al. 2019; Sun et al. 2018a). It is a good 
site to carry out the study of spatial–temporal changes in gla-
cier mass balance on the TP, because four glaciers across the 
Qilian Mountains have established glaciological monitoring 
campaigns and some meteorological stations along the Qil-
ian Mountains provide the long time series of meteorological 
data. Qiyi Glacier has been observed for more than 20 years 
since 1974 although the data is incontiguous. It is the long-
est mass balance data on the TP except for Xiaodongke-
madi Glacier in the central TP (Yao et al. 2012). Three 
other glaciers are observed since 2010 or later (Cao et al. 
2017; Liu 2018; Zhang et al. 2021). These provided avail-
able databases to drive the energy and mass balance (EMB) 
model which describes the detailed physical processes of 
glacier accumulation and ablation (Ding et al. 2017; Fujita 
and Nuimura 2011; Guo et al. 2021; Hock and Holmgren 
2005; Jiang et al. 2010; Liu et al. 2021; Reijmer and Hock 
2008; Sun et al. 2018b; Zhu et al. 2020). This method has 
been used to reconstruct worldwide long-term glacier mass 
balance (Anderson and Mackintosh 2012; Bonekamp et al. 
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2019; Fujita and Nuimura 2011; Mattea et al. 2021; Möller 
et al. 2016; Mölg et al. 2014; Van Pelt et al. 2019; Vandecrux 
et al. 2021; Yang et al. 2016; Zhu et al. 2018b, 2021b). And 
these results are reasonable and very useful to quantify the 
spatial–temporal changes in glacier mass balance and melt-
water and their climate drivers. The objectives of this study 
are: (1) to reconstruct mass balance records of Qiyi Glacier 
in the west and Ningchan No.1 Glacier in the eastern Qilian 
Mountains from 1970 to 2015 using an EMB model, (2) to 
investigate the spatiotemporal patterns of glacier mass bal-
ance across the Qilian Mountains by comparing these two 
reconstructed mass balance datasets and the other published 
mass balance datasets, and (3) to analyze the relationships 
between glacier mass balance and regional climate regimes, 
and provide insights into the atmospheric circulation that is 
responsible for the interannual/interdecadal changes in gla-
cier mass balance across the Qilian Mountains. This research 
has practical implications for understanding the spatial–tem-
poral changes of glacier mass balance and improving our 
ability to reconstruct and predict water availability in the 
arid and semi-arid regions around the Qilian Mountains and 
on the Tibetan Plateau.

2  Study area, method and data

2.1  Study area

Our study glaciers (Fig. 1), Qiyi Glacier (39° 14′ 20.94ʺ 
N, 97° 45′ 25.72ʺ E) and Ningchan No.1 Glacier (37° 30′ 
47.60ʺ N, 101° 50′ 18.73ʺ E), are typical sub-continental 
(Shi and Liu 2000), valley-type glaciers largely free of 
supraglacial debris cover (Fig. S1 in the Supplementary 
Material). Qiyi Glacier is located on the north slope of the 
Tuolai Mountains (Fig. 1a) and can be treated as a typical 
glacier of the western Qilian Mountains. The glacier flows 
northward from an elevation of 5159 to 4304 m a.s.l. and 
has an area of approximately 2.87  km2 (Yao et al. 2012), 
with the median elevation (where elevation divides glacier 
area equally) of 4780 am a.s.l. in 2000 (Fig. 1b). Records 
from Tuole station, which is located approximately 70 km 
from Qiyi Glacier (Fig. 1a), show that 92% of the annual 
precipitation occurs between May and September (Fig. 1d). 
Ningchan No.1 Glacier had an area of approximately 
0.39 ± 0.04  km2 in 2014 (Cao et al. 2017) and is located on 
the northern slope of the Lenglongling Mountains, eastern 

Fig. 1  Locations of Qiyi and Ningchan No.1 glaciers (blue stars), 
Shiyi and Laohugou No.12 glaciers (pink triangles), the Beida River 
region (red line), the Lenglongling Mountains (grey line), Tuole and 
Menyuan station (blue points) in the Qilian Mountains; Laohugou 
(LHG) and Xiyinghe (XYH) stations (red diamonds), Haibei (HB) 
and Qiyi (QY) stations (white squares), as well as eight other mete-
orological stations (grey points) with an altitude higher than 2500 m 

a.s.l. (a). The area-altitude distribution of Qiyi Glacier (b) and 
Ningchan No.1 Glacier  (c) based on glacier boundaries in 2000 and 
the Shuttle Radar Topography Mission digital elevation model. Mean 
monthly air temperature (red dotted line) and precipitation (blue his-
togram) at Tuole station (d) and Menyuan station (e) during 1970–
2015
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Qilian Mountains (Fig. 1a). Its altitudinal range is from 4260 
to 4640 m a.s.l. (Cao et al. 2017), with the median eleva-
tion of about 4400 m a.s.l. in 2000 (Fig. 1c). Meteorological 
records from Menyuan station, which is located approxi-
mately 25 km from Ningchan No.1 Glacier (Fig. 1a), show 
83% of the annual precipitation occurs from May to Septem-
ber (Fig. 1e). The westerlies dominate the regional climate 
of the western Qilian Mountains (Yao et al. 2012), whereas 
the eastern Qilian Mountains are dominated by westerlies 
and the Asian summer monsoon (Yang et al. 2014; Li et al. 
2015).

2.2  The energy and mass balance model and input 
data

We apply an EMB model in this study which is fully 
described in Fujita and Ageta (2000) and Yang et al. (2013). 
Here we mainly present the most important features of the 
model. The model solves the following equations:

where QM is the melt energy, Sin is the incoming short-
wave radiation, α is the surface albedo, Lin is the incoming 
longwave radiation, Lout is the outgoing longwave radiation, 
Hsen is the sensible heat flux, and Hlat is the latent heat flux. 
QG is the subsurface heat flux, which consists of conductive 
heat flux (G) and an energy flux due to penetrating shortwave 
radiation (QPS). QM is defined as positive when it is larger 
than 0, and other fluxes are defined as positive when they 
are directed towards the surface. The point mass balance 
(M) is composed of melt, sublimation/evaporation, refreez-
ing (Cen) and solid precipitation (Psnow). And meltwater is 
the absolute value of the melt. Lm is the latent heat of ice 
melt and Lv is the latent heat of evaporation/sublimation. 
Differing from the previous version (Yang et al. 2013), we 
include new features based on published work: (i) albedo is 
incorporated following Oerlemans and Knap (1998); (ii) Lin 
is calculated using the clear-sky parameterization of Brunt 
(1932) combined with a cloud correction described by Craw-
ford and Duchon (1999).

where  σ  i s  t he  Ste fan-Bol tzmann  const an t 
(5.67 ×  10–8 W  m−2  K−4); Ta is the air temperature at the 
height of 2 m (°C); τatm is the ratio of the measured Sin to the 
solar radiation at the top of the atmosphere; ea is the vapor 
pressure (hPa) calculated from relative humidity and air 
temperature. For Qiyi and Ningchan No.1 glaciers, the two 

(1)QM = Sin(1 − �) + Lin + Lout + Hsen + Hlat + QG

(2)M = ∫
(

QM

Lm
+

Hlat

Lv
+ Cen+Psnow

)

dt

(3)
Lin = �(Ta + 273.15)4((1 − �atm) + �atm ∗ (b

1
+ b

2
(
√

ea))

constants (b1 and b2) of the Lin model were optimized using 
the measured Lin, air temperature, and relative humidity at 
Laohugou station (Qin 2018; Sun et al. 2011) and Xiyinghe 
station (XYH, Zhao and Zhang 2019) (Fig. 1a), respectively. 
The modelled Lin agreed well with the measured values at 
the two sites (Fig. S2). Laohugou station and Xiyinghe sta-
tion are located about 110 km northwest of Qiyi Glacier 
and about 5 km northeast of Ningchan No.1 Glacier, respec-
tively. A detailed description of the EMB model used in this 
study along with its parameters are presented in Text S1 and 
Table S1 in the Supplementary Material, respectively.

Meteorological data from Tuole station and Menyuan 
station are used to force the EMB model over a period of 
46 years from October 1969 to September 2015 at 40 m ver-
tical intervals and a daily time-step for Qiyi and Ningchan 
No.1 glaciers, respectively. Time series of daily mean air 
temperature (Ta), daily mean relative humidity (RH) and 
daily precipitation are interpolated to each elevation band 
using their vertical gradients. Hoffman et al. (2008) found 
that the daily time-step EMB model can be used to model 
the ablation process that likely occurs over shorter time-
scales, and monthly and seasonal totals of ablation seem 
robust for the daily time-scale EMB model. The comparison 
of measured discharge and mass balance and modelled val-
ues from the daily time-scale EMB model (Fujita and Sakai 
2014; Yang et al. 2016; Zhang et al. 2012) also support the 
point of Hoffman et al. (2008). However, some parameters 
of the energy and mass balance model are different between 
the hourly and daily time-scale EMB model (Hoffman et al. 
2014), which means that the calibrated parameters for the 
hourly time-scale EMB model need to modify when we use 
these parameters in the daily time-scale EMB model. In this 
work, we mainly analyze the seasonal totals of mass bal-
ance components, thus, the daily time-scale EMB model is 
suitable.

Daily mean wind speed (WS) for each glacier is assumed 
to be independent of the altitude, because the WS data on the 
glacier is considered too sparse to derive a general scheme 
to quantitatively assess the spatial distribution of wind speed 
(Hock and Holmgren 2005). The gradients in precipitation 
and Ta for each glacier are obtained from the measured mete-
orological data at different altitudes around the glacier (Cao 
et al. 2019; Wang et al. 2009). Daily mean Sin at Tuole and 
Menyuan stations are estimated from their respective sun-
shine duration, RH, Ta, air pressure and their geographic 
location (latitude, longitude and altitude) (Yang et al. 2001). 
Modelled Sin at Tuole and Menyuan stations were corrected 
by measured Sin at 4295 m a.s.l. near Qiyi Glacier over the 
period 2002–2005 (Fig. 1a, Sakai et al. 2006) and at Haibei 
station (Fig. 1a, Zhu and Peng 2019) near Ningchan No.1 
Glacier from 2014 to 2015, respectively. The detailed infor-
mation about daily mean Sin can be seen in Text S1. The 
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corrected Sin for each glacier is assumed to be independent 
of the altitude. All parameters are presented in Table S1.

Temporal changes in glacier area are considered in the 
model using the different boundaries of each glacier over dif-
ferent years. For both glaciers, glacier boundaries between 
1970 and 1994 were taken from Landsat TM image from 
1990; and between 1995 and 2009 were taken from Land-
sat TM image from 2000. Glacier outlines were digitized 
on-screen manually from the Landsat image, depending on 
false colour image composites (TM: RGB by bands 543) (Ye 
et al. 2017). The uncertainty of glacier boundaries obtained 
by this method is always below the mapped glacier area 
of 6% (Bolch et al. 2010; Shangguan et al. 2014; Ye et al. 
2017). And glacier boundaries between 2010 and 2015 are 
represented by the boundary in 2015 from Li et al. (2019a). 
The area distribution at each elevation band (hypsometry) 
of these glaciers is derived from these glacier boundaries 
and the 90 m Shuttle Radar Topography Mission digital 
elevation model (https:// glovis. usgs. gov/). In this study, only 
parameter values required by the albedo model were tuned 
to achieve the best match between the modelled and in-situ 
mass balance (including the annual glacier-wide mass bal-
ance and point mass balance). First, the model was adjusted 
to minimize the root mean square error (RMSE) between 
measured and modelled annual glacier-wide mass balance, 
taking advantage of long-term mass balance observations on 
Qiyi Glacier. Second, the model was retuned until the result-
ing RMSE between the measured and modelled point mass 
balance was minimized. Meanwhile, the RMSE between 
measured and best modelled annual glacier-wide mass bal-
ance is between 90 and 110% of the minimum RMSE in the 
first model iteration. For Qiyi Glacier, the measured mass 
balances from 2005/06 balance year to 2014/15 balance 
year were used for calibrating the parameters in the model, 
and measured mass balances during 1970–2004, modelled 
mass balance from Wang et al. (2017) and periodic geodetic 
mass balance data from Shean et al. (2020) were used for 
validating the simulated results. For Ningchan No.1 Glacier, 
the measured mass balances from 2010/11 balance year to 
2014/15 balance year were used for calibrating the param-
eters in the model, and the modelled regional mass balance 
data in the Lenglongling Mountains from Cao et al. (2019) 
and the geodetic mass balance data from Shean et al. (2020) 
were used for validating the simulated results.

2.3  Other data

Monthly air temperature and precipitation records from 10 
Chinese national meteorological stations near the Qilian 
Mountains at elevations above 2500 m (Fig. 1) are used to 
analyze the spatial correlations between glacier mass bal-
ance and regional climate variables. Additionally, to inves-
tigate glacier mass changes from a macroscale atmospheric 

circulation perspective, the following data products are uti-
lized in the present investigation: the monthly geopotential 
height and wind fields at 500 hPa from the Japanese 55-year 
reanalysis dataset (JRA55, 1.25° × 1.25°, 1958–2019) (Kob-
ayashi et al. 2015), the monthly sea surface temperature 
(SST) from the Hadley Centre Sea Ice and Sea Surface 
Temperature dataset (HadISST) (1º × 1º, Rayner et al. 2003), 
and monthly gridded air temperature data and precipitation 
data from CN05.1 which is based on interpolation from over 
2400 daily station reports in China (0.25º × 0.25º, Wu and 
Gao 2013; Xu et al. 2009). Lastly, to investigate glacier mass 
changes in the Qilian Mountains from a regional perspec-
tive, the reconstructed annual mass balances for Laohugou 
No.12 Glacier in the western Qilian Mountains (Chen et al. 
2020) and for Shiyi Glacier in the central Qilian Moun-
tains (Zhang et al. 2021), and the reconstructed regionally-
averaged annual mass balance for 631 glaciers (total area 
of 318.2  km2) in the Beida River catchment (97°∼99.5° E, 
38°∼40° N) in the western Qilian Mountains (Wang et al. 
2017) and for 244 glaciers (103.2  km2) in the Lenglongling 
Mountains (101.2°∼102.5° E, 37.3°∼37.9° N) in the eastern 
Qilian Mountains (Cao et al. 2019) are also used in this work 
(Fig. 1). These mass balances are modelled using the degree-
day model and meteorological data from different stations, 
and calibrated by measured mass balance and/or periodic 
geodetic mass balance data.

3  Results

3.1  Model calibration, validation and uncertainty 
analysis

For Qiyi Glacier, the modelled mass balance for different 
years largely agreed with the available in-situ mass bal-
ance observation taken at different altitudes (Fig. 2; Pu 
et al. 2005; Wang et al. 2017; Yao et al. 2012). The RMSE 
between measured and modelled point mass balance at all 
stakes is 333 mm w.e. for the seven years presented in Fig. 2. 
The simulations of annual glacier-wide mass balance are 
in good accord with observations (correlation coefficient, 
r = 0.92, p < 0.01, n = 20 and RMSE = 162 mm w.e., Fig. 3); 
the simulated and observed multi-year averaged glacier-
wide mass balances were − 208 and − 248 mm w.e.  a−1, 
respectively. The correlation coefficients used in this study 
are obtained using the Pearson correlation analysis. In addi-
tion, the simulated glacier-wide mass balance of Qiyi Gla-
cier in this study shows a good agreement with Wang et al. 
(2017) (r = 0.89 and RMSE = 139 mm w.e.  a−1; Fig. 3a). 
The average glacier-wide mass balance over 1970–2013 was 
-214 mm w.e.  a−1, which is only 10 mm w.e.  a−1 larger than 
the value determined by Wang et al. (2017).

https://glovis.usgs.gov/
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The simulated mass balance corresponds well with the 
in-situ mass balance observations at different altitudes 
and on a glacier-wide basis on Ningchan No.1 Glacier 
(Fig. 4; Cao et al. 2017). The RMSE between measured 
and modelled point mass balance at all stakes is 352 mm 
w.e. for the five years presented in Fig. 4. The modelled 
mean glacier-wide annual mass balance from 2010/11 to 
2014/15 was approximately − 971 mm w.e.  a−1, which 
corresponds well with the measured value of − 900 mm 
w.e.  a−1. Glacier mass balance from the degree-day model 
for the Lenglongling Mountains (Fig. 1) during 1972–2015 
(Cao et al. 2019) also agrees with our reconstructed mass 
balance for Ningchan No.1 Glacier (r = 0.9, p < 0.01). In 
addition, Shean et al. (2020) estimated an average mass 
balance of − 233 ± 93 mm w.e.  a−1 for Qiyi Glacier and 
−  478 ± 350  mm w.e.  a−1 for Ningchan No.1 Glacier 
between 2000 and 2018. The measured mean glacier-wide 
mass balance for Qiyi Glacier was − 480 mm w.e.  a−1 

during 2002–2015. Our modelled values (− 400 ± 149 mm 
w.e. for Qiyi Glacier and −  773 ± 286  mm w.e. for 
Ningchan No.1 Glacier) for 2000–2015 lie within the 
uncertainties of the values presented in Shean et al. (2020). 
These results confirm that the EMB model satisfactorily 
reconstructs the mass balance variations from 1970 to 
2015 for Qiyi and Ningchan No.1 glaciers.

The uncertainties in modelled glacier-wide mass bal-
ances originate mainly from parameters in the albedo model 
which are unknown in this work. To determine uncertainties 
for these parameters and their impact on results, they were 
perturbed by ± 10% from their original/calibrated values 
(Table S2) and the model was run again. This is a com-
mon method in the model to estimate the uncertainty when 
parameters are unknown (Azam and Srivastava 2020; Zhu 
et al. 2021a). The total uncertainty in the modelled annual 
glacier-wide mass balance was estimated by adding all the 
parametric uncertainties, using error propagation theory, to 
yield a total uncertainty of ± 149 and ± 286 mm w.e.  a−1 for 
modelled glacier-wide mass balance on Qiyi and Ningchan 
No.1 glaciers, respectively.

Fig. 2  Comparison of modelled (blue line) and measured (red circles) 
mass balance as a function of elevation in different years (a–g), and 
modelled and measured glacier-wide mass balance for different years 
(h) on Qiyi Glacier

Fig. 3  a Comparison between the modelled and measured annual 
mass balance for Qiyi Glacier, with respect to the reconstructed 
mass balance of Qiyi Glacier from Wang et al. (2017); b comparison 
between the modelled mass balance on Ningchan No.1 Glacier and 
the reconstructed regionally-averaged glacier annual mass balance 
of the Lenglongling Mountains (Cao et al. 2019). The black line and 
black dashed line represent the average mass balance of both glaciers 
during 1970–1994 and 1995–2015 in this study, respectively
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3.2  Seasonal cycle in glacier mass balance 
components

Annual melt is the largest mass balance component at the 
two glaciers. Melt predominantly occurs during the ablation 
season and the mean monthly melt is significantly stronger in 
July–August than in other months on both glaciers (Fig. 5). 
The absolute value of mean ablation-season melt is about 
1.9 times larger on Ningchan No.1 Glacier than on Qiyi 
Glacier (Table 1 and Fig. 5). The main source of mass accu-
mulation at the two glaciers is snowfall (Table 1). Most 
snowfall occurs in May–September on Qiyi Glacier and in 
March–October on Ningchan No.1 Glacier (Fig. 5). Snowfall 
is 220 mm w.e.  a−1 larger in the ablation season than in the 
cold season (October–May) on Qiyi Glacier, while snowfall 
is only 90 mm w.e.  a−1 less in the ablation season than in 
the cold season on Ningchan No.1 Glacier. This indicates 
that the character of seasonal snowfall is slightly different 
at the two glaciers, even though this precipitation mainly 
occurs during the ablation season. This indicates a higher 
influence of Ta on snowfall during the ablation season for 
Ningchan No.1 Glacier than Qiyi Glacier. 18% and 45% of 
ablation-season glacier-wide precipitation falls on glacier 
surface as rain on Qiyi and Ningchan No.1 glaciers, respec-
tively (Table 1). Mean annual snowfall is 214 mm w.e.  a−1 
higher on Ningchan No.1 Glacier than Qiyi Glacier (Table 1) 
mainly due to higher snowfall in March–May and October 
on Ningchan No.1 Glacier (Fig. 5). Such high snowfall con-
tributes to lower ice area–elevation distribution on Ningchan 
No.1 Glacier than Qiyi Glacier (Fig. 1). Refreezing and sub-
limation/evaporation are quite small (Table 1 and Fig. 5). 
Refreezing largely occurs in the ablation season when strong 
melt occurs (Fig. 5). And refreezing was slightly higher on 
Ningchan No.1 Glacier than on Qiyi Glacier in different sea-
sons (Table 1). Sublimation/evaporation occurs year-round, 
and it was slightly higher on Qiyi Glacier than on Ningchan 
No.1 Glacier in different seasons (Table 1). Except for 
July and August, the mean monthly mass balance is close 
to zero for Qiyi Glacier because of the small ablation and 
snowfall accumulation (Fig. 5a). For Ningchan No.1 Gla-
cier, the mean monthly mass balance is significantly posi-
tive during March–May and September–October due to the 
reduced ablation and high snowfall accumulation (Fig. 5b). 
Significant and most mass loss is found in July and August 
due to strong melt, which causes the negative mass balance 
on both glaciers (Fig. 5). The mean annual mass balance 
is − 211 ± 149 and − 340 ± 286 mm w.e.  a−1 on Qiyi and 
Ningchan No.1 glaciers (Table 1), respectively. 

Fig. 4  Comparison of modelled (blue line) and measured (red circles) 
mass balance as a function of elevation in different years (a–e), and 
modelled and measured glacier-wide mass balance in different years 
(f) on Ningchan No.1 Glacier

Fig. 5  Average monthly mass fluxes of the mass balance components 
on a Qiyi and b Ningchan No.1 glaciers during 1970–2015
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3.3  Interannual variability in glacier mass balance 
components

The magnitudes of interannual variations (or standard 
deviations) in each cold-season mass balance component 

are significantly smaller than those in each ablation-season 
value (Table 1), indicating that interannual mass balance 
variability mainly occurs in the ablation season. The stand-
ard deviation of ablation-season melt and snowfall is signifi-
cantly larger than that of ablation-season refrozen water and 

Table 1  The seasonal meteorological variable at stations and seasonal glacier-wide mass balance components for Qiyi and Ningchan No.1 gla-
ciers during 1970–2015

The values in the bracket are standard deviations of the detrending variables

Scale Variable Qiyi Ningchan No.1

Cold Ablation Annual Cold Ablation Annual

Station Precipitation (mm) 59 251 310 156 372 528
Ta (℃) − 7.8 8.5 − 2.4 − 3.6 10.6 1.1

Glacier-wide 
(mm w.e.  a−1)

Mass balance − 1 (48) − 210 (242) − 211 (267) 241 (51) − 582 (399) − 340 (413)
Snowfall 89 (28) 309 (64) 398 (74) 261 (48) 351 (81) 612 (92)
Refreezing 4 (3) 125 (31) 129 (31) 34 (17) 168 (24) 203 (24)
Sublimation − 69 (12) − 64 (11) − 133 (18) − 30 (6) − 16 (5) − 46 (8)
Melt − 25 (18) − 580 (207) − 605 (216) − 24 (15) − 1085 (326) − 1109 (326)
Rain 0 69 69 4 282 285
Precipitation 89 378 467 265 633 897

Fig. 6  Seasonal mass fluxes of 
the mass balance components 
on a Qiyi and b Ningchan No.1 
glaciers during 1970–2015
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sublimation/evaporation for the two glaciers (Table 1). After 
detrending, ablation-season snowfall explains 56% (p < 0.05) 
and 55% (p < 0.05) of the variance in annual mass balance, 
and ablation-season melt can explain 89% (p < 0.05) and 
97% (p < 0.05) of the variance in annual mass balance for 
Qiyi and Ningchan No.1 glaciers (Fig. 6 and Table 2). Both 
the linear trend and interannual variability of data can con-
tribute to the correlation between the two time-series data. 
When the linear trend is removed from the time series, the 
correlation coefficient can indicate the relationship between 
these data at interannual timescales. Thus, we selected to 
calculate the correlations between the detrended time series 
in this work to understand how climates impact interannual 
changes in mass balance. Above all, ablation-season melt is 
the most important component controlling the interannual 
changes in mass balance for both glaciers (Table 2).

3.4  The mass balance changes from 1970 to 2015

Interannual variability in mass balance is significant at 
the two glaciers (Fig. 3), with a maximum of 394 (or 605) 
mm w.e. in 1982/83 (or 1982/83) and a minimum of − 842 
(or − 1543) mm w.e. in 2005/06 (or 2012/13) for Qiyi (or 
Ningchan No.1) Glacier. For the two glaciers, most of 
ablation-season mass balances are negative except for sev-
eral years before 1993/94, and interannual fluctuation of 
ablation-season mass balance is highly consistent with that 
of annual mass balance during 1970–2015 (Fig. 6). Cold-
season mass balances show small interannual variations, 
with values from − 107 to 120 mm w.e. and from 162 to 
345 mm w.e. on Qiyi and Ningchan No.1 glaciers, respec-
tively (Fig. 6).

Despite some internal differences, interannual variations 
in mass balance are broadly synchronous at the two glaciers. 
After detrending, the two annual mass balance time series 
exhibit similar variations, with a correlation coefficient (r) 
of 0.61 (p < 0.01, Table 3). Such correlation mainly occurs 
in the ablation season (Fig. 6, r = 0.65, p < 0.01). We also 
evaluated the relationships of the annual mass balance of 

glaciers in different parts of the Qilian Mountains. After 
detrending, correlation coefficients between the annual mass 
balance of the majority of selected glaciers in the Qilian 
Mountains are larger than 0.6 (p < 0.01, Table 3). The annual 
mass balances of glaciers from different regions of the Qil-
ian Mountains show marked similarities at the interannual 
timescale.

Our study glaciers clearly show an overall decreasing 
mass balance trend (p < 0.01 via linear regression) dur-
ing 1970–2015 (Fig. 3). According to the nonparametric 
Mann–Kendall test, the most likely abrupt change point 
occurred between 1993/94 and 1994/95 on Qiyi Glacier 
and between 1995/96 and 1996/97 on Ningchan No.1 Gla-
cier. To compare the interdecadal variability, we divide our 
time series into two periods: 1970–1994 and 1995–2015 
(Fig. 3). Student’s t-tests, at 95% confidence level, reveal 
that the 1995–2015 period statistically differs from 1970 to 
1994 on Qiyi (p < 0.01) and Ningchan No.1 (p < 0.01) gla-
ciers. During 1970–1994, both glaciers had small negative 
or positive mass balances, and over 1995–2015 they both 
show strong mass loss (Fig. 3). Of the total mass loss during 
1970–2015, the majority occurred during 1995–2015. The 
average annual mass balance during 1995–2015 was ~ 385 
and ~ 778 mm w.e.  a−1 smaller than that during 1970–1994 
on Qiyi and Ningchan No.1 glaciers, respectively.

4  Discussion

4.1  Interannual glacier mass balance variability 
over the Qilian Mountains, and their 
relationships with climate and large‑scale 
circulation

4.1.1  Climate factors controlling the interannual glacier 
mass balance changes across the Qilian Mountains

To quantify the effects of climate factors on interannual 
changes in glacier mass balances in the Qilian Mountains, 

Table 3  The correlation coefficients (r) among mass balances for different glaciers using their detrending time series

Glacier 1 Glacier 2 Period r

Qiyi (this study) Ningchan No.1 (this study) 1970–2015 0.61 (p < 0.01)
Qiyi (this study) Beida River catchment in the western Qilian Mountains (Wang et al. 2017) 1970–2013 0.84 (p < 0.01)
Qiyi (this study) Laohugou No.12 Glacier in the western Qilian Mountains (Chen et al. 2020) 1970–2015 0.53 (p < 0.01)
Qiyi (this study) Lenglongling region in the eastern Qilian Mountains (Cao et al. 2019) 1972–2015 0.66 (p < 0.01)
Qiyi (this study) Shiyi Glacier in the middle Qilian Mountain (Zhang et al. 2021) 1970–2015 0.7 (p < 0.01)
Ningchan No.1 (this study) Laohugou No. Glacier in the western Qilian Mountains (Chen et al. 2020) 1970–2015 0.6 (p < 0.01)
Ningchan No.1 (this study) Lenglongling region in the eastern Qilian Mountains (Cao et al. 2019) 1972–2015 0.85 (p < 0.01)
Ningchan No.1 (this study) Beida River catchment in the western Qilian Mountains (Wang et al. 2017) 1972–2013 0.68 (p < 0.01)
Ningchan No.1 (this study) Shiyi Glacier in the middle Qilian Mountain (Zhang et al. 2021) 1970–2015 0.66 (p < 0.01)
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we examine the relationships among ablation-season 
Ta, annual precipitation, and annual mass balance. After 
detrending the data, the annual mass balance of Qiyi and 
Ningchan No.1 glaciers demonstrate a weak correlation with 
annual precipitation at Tuole (r = 0.58, p < 0.01) and Meny-
uan (r = 0.3, p < 0.05) station, respectively. It is because 
annual precipitation plays a minor role in influencing inter-
annual changes in the melt for the two glaciers (Table 2). 
Instead, the annual mass balance of Qiyi and Ningchan 
No.1 glaciers show a strong negative correlation with Ta 
in the ablation season from Tuole (r = − 0.71, p < 0.01) and 
Menyuan (r =− 0.8, p < 0.01) stations, respectively. We 
analyzed how ablation-season Ta impacts the interannual 
changes in mass balance for the two glaciers. For the two 
glaciers, the correlations between ablation-season Ta and 
snowfall are significant (Table 2), while the correlations 
between ablation-season Ta and precipitation are not sig-
nificant (after detrending, r = 0.05, p > 0.05 for Qiyi Glacier; 
r = 0.05, p > 0.05 for Ningchan No.1 Glacier). These indi-
cate that changes in ablation-season Ta can impact snowfall 
amount by changing the precipitation phase (or the ratio of 
snowfall to precipitation) because correlation (after detrend-
ing, r = − 0.6, p < 0.05 for Qiyi Glacier; r = − 0.72, p < 0.05 
for Ningchan No.1 Glacier) between ablation-season Ta at 
Tuole (or Menyuan) station and the ratio of ablation-season 
glacier-wide snowfall to ablation-season glacier-wide pre-
cipitation for Qiyi (or Ningchan No.1) Glacier is significant 
(Fig. S3). In addition, ablation-season Ta can impact the 
changes in Lin for the two glaciers according to a significant 
positive correlation between these two variables (Fig. S3 and 
Table 2) which has also been found in some other studies 
(Ohmura 2001; Yang et al. 2001; Zhu et al. 2017). A good 
relationship between melt energy and Lin (Table 2) indicates 
Lin can affect changes in melt energy during the ablation 
season. Ablation-season melt energy linked to Lin can impact 
the changes in albedo and Sout by changing snow charac-
teristics (such as snow thickness). Thus, ablation-season Ta 
also shows good relationships with ablation-season albedo 
and Sout (Table 2). For Ningchan No.1 Glacier, Ta can also 
affect melt energy by linking turbulent heat fluxes during 
the ablation season due to well relationships between Ta and 
turbulent heat fluxes, and between meltwater and turbulent 
heat fluxes (Table 2). However, the low correlations between 
turbulent heat fluxes and meltwater (Table 2) and small 
strengths (standard deviations) of interannual variability of 
turbulent heat fluxes indicate that the influence of changes 
in turbulent heat fluxes on melt energy during the ablation 
season is small for Ningchan No.1 Glacier. Above all, Ta 
mainly affects the snowfall (or precipitation phase) and Lin 
during the ablation season, which further influences albedo 
and melt for the two glaciers. In this way, ablation-season 
Ta controls the interannual changes in mass balance for the 
two glaciers.

We further analyze the relationships between the annual 
mass balance of Qiyi and Ningchan No.1 glaciers and 
regional climate variables from CN05.1. The mass balance 
of Qiyi and Ningchan No.1 glaciers is significantly nega-
tively correlated with the ablation-season Ta in the north-
east TP (Fig. S4). The annual mass balance of Qiyi Glacier 
during 1970–2015 showed a slight positive correlation with 
annual precipitation in most regions of the western Qilian 
Mountains (Fig. S4). However, the annual mass balance of 
Ningchan No.1 Glacier during 1970–2015 yields no obvi-
ous correlation with the annual precipitation across the 
Qilian Mountains (Fig. S4). In addition, the annual mass 
balance of Laohugou No.12 and Shiyi glaciers correlated 
with the ablation-season Ta in the northeast TP and showed 
no significant relationship with annual precipitation in the 
northeast TP (Fig. S5). These relationships also occurred 
for regionally-averaged glacier annual mass balances for the 
Beida River catchment in the western Qilian Mountains and 
Lenglongling Mountains in the eastern Qilian Mountains 
(Figure is now shown). Thus, interannual changes in mass 
balance of glaciers appear to be controlled mainly through 
ablation-season Ta variations in the Qilian Mountains.

4.1.2  Relationships between atmospheric circulation 
patterns and glacier mass balance across the Qilian 
Mountains

The correlation analysis is helpful in revealing the influ-
ence of atmospheric circulation on changes in climates 
and glacier mass balance (Mölg et al. 2014; Vuille et al. 
2008; Zhu et al. 2021b). To explore the influence of large-
scale dynamic processes on interannual changes in glacier 
mass balance across the Qilian Mountains, we correlate the 
regionally-averaged Ta index with geopotential height and 
wind fields at the 500 hPa level. The regionally-averaged 
Ta index is derived from the normalized ablation-season Ta 
averaged over the 10 stations along the Qilian Mountains 
(Fig. 1 and Table S3). The correlation coefficient between 
the regionally-averaged Ta index and the measured ablation-
season Ta from all 10 stations is greater than 0.9 for each 
station. In addition, a strong positive correlation between the 
regionally-averaged Ta index and CN05.1 gridded ablation-
season Ta data was found in the northeast TP (Fig. S6). After 
detrending, the correlation coefficients between the region-
ally-averaged Ta index and the reconstructed mass balance 
of Qiyi, Ningchan No.1, Laohugou No.12, and Shiyi glaciers 
and of regional glaciers in the Beida River catchment and 
Lenglongling Mountains are − 0.69, − 0.8, − 0.75, − 0.71, 
− 0.76, and − 0.87 with p < 0.01, respectively (Table 4). 
Thus, this regionally-averaged Ta index is highly representa-
tive of the consistent ablation-season Ta changes and glacier 
mass balance variations in the western and eastern Qilian 
Mountains.
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Spatial patterns of correlations between the region-
ally-averaged Ta index and JRA55 gridded geopotential 
height/wind fields at 500 hPa in the ablation season during 
1970–2015 reveal distinct centers of strong correlation from 
Europe to the Northwest Pacific (Fig. 7). A higher Ta in the 
Qilian Mountains corresponds to higher 500 hPa geopoten-
tial heights and anomalous anticyclonic circulation in north-
ern central China, Europe and the Northwest Pacific, and to 
lower 500 hPa geopotential heights and anomalous cyclonic 
circulation in central Asia (Fig. 7). Two distinct processes 
may jointly influence interannual changes in ablation-season 
Ta in the Qilian Mountains. Some studies have found that 
the combined effects (Li et al. 2019b) or interactions (Mölg 

et al. 2017; Yao et al. 2019) of different circulations play an 
important role in regional climate changes. The first process 
could be linked to the Europe-Asia teleconnection. The cor-
relation fields between the 500 hPa regionally-averaged geo-
potential height over Europe (55°–65° N, 15° E–50° E) and 
JRA55 gridded geopotential height/wind fields at 500 hPa 
in the ablation season during 1970–2015 (Fig. 8a) show 
similar wave trains from Europe to northern central China 
(Fig. 7), illustrating that atmospheric circulation anomalies 
in Europe can impact those in the Qilian Mountains. Such 
wave-train enables the transfer of perturbation energy from 
the North Atlantic/Europe to eastern Asia, associated with 
the jet stream (Bothe et al. 2011; Li and Ruan 2018; Ding 

Table 4  The correlation coefficients of ablation-season circulation indexes and annual mass balance of four glaciers during 1970–2015

The values in the brackets are the correlation coefficients after a three-year running mean was used for ablation-season mass balances on four 
glaciers and circulation indexes
**p < 0.01; *p < 0.05

Circulation 
indexes

Ningchan No.1 Lenglongling Annual mass balance Regionally-
averaged
Ta indexQiyi Beida River Shiyi Laohugou 

No.12

Regionally-
averaged

Ta index
 Without 

detrending
− 0.89**  

(− 0.95**)
− 0.91**  

(− 0.95**)
− 0.77**  

(− 0.88**)
− 0.84**  

(− 0.93**)
− 0.69**  

(− 0.7**)
− 0.88**  

(− 0.94**)
1** (1**)

 After detrend-
ing

− 0.8**  
(− 0.87**)

− 0.87**  
(− 0.88**)

− 0.69**  
(− 0.81**)

− 0.76*  
(− 0.83**)

− 0.71**  
(− 0.71**)

− 0.75**  
(− 0.77**)

1** (1**)

Regionally-
averaged 
geopotential 
height over 
northern cen-
tral China

(30° N–45° N, 
90° E–130° E)

 Without 
detrending

− 0.68**  
(− 0.82**)

− 0.71**  
(− 0.82**)

− 0.61**  
(− 0.79**)

− 0.69**  
(− 0.83**)

− 0.54**  
(− 0.59**)

− 0.72**  
(− 0.9**)

0.81** (− 0.9**)

 After detrend-
ing

− 0.47**  
(− 0.52**)

− 0.56**  
(− 0.53**)

− 0.47**  
(− 0.55**)

− 0.52*  
(− 0.54**)

− 0.45**  
(− 0.41**)

− 0.52**  
(− 0.68**)

0.68**  
(− 0.69**)

Regionally-
averaged 
geopotential 
height over 
Europe (55° 
N–65° N, 15° 
E–50° E)

 Without 
detrending

− 0.65**  
(− 0.79**)

− 0.69**  
(− 0.84**)

− 0.51**  
(− 0.78**)

− 0.56**  
(− 0.79**)

− 0.52**  
(− 0.65**)

− 0.51**  
(− 0.69**)

0.64** (− 0.8**)

 After detrend-
ing

− 0.57**  
(− 0.67**)

− 0.61**  
(− 0.67**)

− 0.39**  
(− 0.64**)

− 0.46**  
(− 0.61**)

− 0.45**  
(− 0.54**)

− 0.36**  
(− 0.48**)

0.57**  
(− 0.73**)

K–KE index
 Without 

detrending
− 0.68**  

(− 0.86**)
− 0.66**  

(− 0.87**)
− 0.56**  

(− 0.76**)
− 0.63**  

(− 0.67**)
− 0.41**  

(− 0.58**)
− 0.67**  

(− 0.82**)
0.74**  

(− 0.88**)
 After detrend-

ing
− 0.54**  

(− 0.72**)
− 0.52**  

(− 0.71**)
− 0.42**  

(− 0.56**)
− 0.48**  

(− 0.52**)
− 0.3*  

(− 0.41**)
− 0.52**  

(− 0.64**)
0.64**  

(− 0.79**)



What induces the spatiotemporal variability of glacier mass balance across the Qilian Mountains  

1 3

and Wang 2005; Mölg et al. 2014; Saeed et al. 2011). Simi-
larly, Mölg et al. (2017) found that atmospheric circulation 
patterns comprising an anticyclonic anomaly over Europe 
and a cyclonic anomaly over central Asia can cause high Ta 
in the east TP (including the Qilian Mountains). This pre-
vious study considered that with increasing distance from 
the center of a cyclonic anomaly over central Asia, stronger 
advection of warm air where southerlies meet the expan-
sion zone of the South Asian High would promote warming 

across the east TP (Mölg et al. 2017). Likewise, interannual 
changes in ablation-season Ta across the Qilian Mountains 
appear to have a close linkage with atmospheric circula-
tion anomalies in Europe, through mid-latitude wave trains 
over Eurasia. Zhang et al. (2021) also found that climate 
changes in Europe exert influences on Ta on Shiyi Glacier in 
the central Qilian Mountains. In addition, after detrending, 
the ablation-season regionally-averaged geopotential height 
over northern central China (30° N–45° N, 90° E–130° E) 

Fig. 7  Correlation fields between detrended JRA55 gridded geo-
potential height (gpm) fields/wind fields at 500  hPa and detrended 
regionally-averaged air temperature index during the ablation sea-
son from 1970 to 2015. The correlations of the 500 hPa geopotential 

height fields and wind fields (either zonal or meridional wind speed) 
are plotted only when correlations are significant at the 0.05 level. 
The red dot and red square denote Qiyi and Ningchan No.1 glaciers, 
respectively

Fig. 8  Correlation patterns 
of detrended JRA55 gridded 
geopotential height (gpm)/wind 
fields at 500 hPa height with the 
detrended 500 hPa regionally-
averaged geopotential height 
over Europe (55°–65° N, 15° 
E–50° E) (a) and the detrended 
regionally-averaged sea surface 
temperature over Kuroshio and 
its extension area (25° N–45° 
N, 120° E–180° E) in the North-
west Pacific (b) during the abla-
tion season from 1970 to 2015 
using the Pearson correlation 
analysis. The correlations of 
the 500 hPa geopotential height 
and wind fields (either zonal 
or meridional wind speed) are 
plotted only when correlations 
are significant at the 0.05 level. 
The pink dot and pink square 
denote Qiyi and Ningchan No.1 
glaciers, respectively
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(or over Europe (55° N–65° N, 15° E–50° E)) is signifi-
cantly correlated with the regionally-averaged Ta index, and 
the modelled annual mass balance of Qiyi, Ningchan No.1, 
Laohugou No.12, Shiyi glaciers and of regional glaciers in 

the Beida River catchment and Lenglongling Mountains 
(Table 4 and Fig. 9). Thus, interannual changes in mass bal-
ance and ablation-season Ta across the Qilian Mountains 
appear to have a close linkage with atmospheric circulation 
anomalies in the European region through a wave train of 
cyclonic and anticyclonic anomalies over Eurasia.  

The second factor involves atmospheric circulation 
changes over the Northwest Pacific, which are connected to 
the anticyclonic anomaly in northern central China through 
Northwest Pacific-Asia teleconnection (Fig.  7). Ding 
et al. (2019) suggested that the anomalous high SSTs over 
Kuroshio and its extension area (K–KE) in the Northwest 
Pacific are favorable for the formation of anomalous posi-
tive geopotential heights and anticyclones in the Northwest 
Pacific, by enhancing convection over the Northwest Pacific. 
The K–KE index is defined as the SST averaged over 25° 
N–45° N, 120° E–180° E, which indicates the changes in 
SST over the K–KE (Ding et al. 2019). The correlations 
between the K–KE index and the JRA55 gridded geopoten-
tial height/wind fields at 500 hPa in the ablation season dur-
ing 1970–2015 indicate that anomalous high SSTs over the 
K–KE area are favorable for the formation of anomalous 
positive geopotential height and anticyclonic circulation in 
the Northwest Pacific and northern central China (Fig. 8b). 
This finding illustrates that the changes in SSTs over the 
K–KE area can impact atmospheric circulation and thus Ta 
in the Qilian Mountains. A positive relationship between 
regionally-averaged Ta index and SSTs over the K–KE area 
(Fig. 10a) verifies that high SSTs over the K–KE area are 
favorable for the high Ta over the Qilian Mountains. Further-
more, the ablation-season K–KE index is significantly cor-
related with the regionally-averaged Ta index, and also with 
the modelled annual mass balance of Qiyi, Ningchan No.1, 
Laohugou No.12, and Shiyi glaciers and of regional glaciers 
in the Beida River catchment and Lenglongling Mountains 
during 1970–2015 (Table 4 and Fig. 9c). In addition, the 
measured mass balance of Qiyi, Ningchan No.1, Laohu-
gou No.12, and Shiyi glaciers also show correlations with 
regionally-averaged Ta index, regionally-averaged geopoten-
tial height over northern central China, regionally-averaged 
geopotential height over Europe and K–KE index (Table S4). 
Please note that the short data series (5 or 6 years) prevent 
the correlations from being significant between regionally-
averaged geopotential height over Europe and Ningchan 
No.1 (or Shiyi) Glacier, and the correlations are more sig-
nificant for Qiyi Glacier which has a relative long-term 
measured annual mass balance. Overall, the combination 
of changes in atmospheric circulation in Europe and SST 
in Kuroshio and its extension area of the Northwest Pacific 
affect interannual changes in glacier mass balance across 
the Qilian Mountains by critically influencing interannual 
variation of Ta during the ablation season.

Fig. 9  Annual mass balance of a Qiyi and Ningchan No.1, b Laohu-
gou No.12 (Chen et al. 2020) and Shiyi (Zhang et al. 2021) glaciers, 
and c regional glaciers in the Beida River catchment (Wang et  al. 
2017) and Lenglongling Mountains (Cao et  al. 2019); d ablation-
season regionally-averaged air temperature over the Qilian Mountains 
and sea surface temperature over the Kuroshio and its extension area 
(25° N–45° N, 120° E–180° E) in the Northwest Pacific; and e stand-
ardized ablation-season 500  hPa regionally-averaged geopotential 
height over northern central China (30°–45° N, 90° E–130° E) and 
over Europe (55° N–65° N, 15° E–50° E) from 1970 to 2015
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4.2  Regional climate variables driving 
interdecadal changes of glacier mass balance 
across the Qilian Mountains

4.2.1  Representativeness of the topographic 
characteristics of the studied glaciers

For glaciers in the Qilian Mountains, glaciers with 
areas < 1.0  km2 accounted for the largest number of gla-
ciers, while glaciers with areas in the range of 1.0–5.0  km2 
accounted for the most glacierized area in the Qilian Moun-
tains (Sun et al. 2018a). And the average glacier area in the 
entire Qilian Mountain is 0.6  km2 (Sun et al. 2018a). The 
average glacier area is 0.33 and 0.46  km2 for the selected 161 
glaciers in the eastern Qilian Mountains and is 0.46  km2 for 
the selected 688 glaciers in the western Qilian Mountains 
(Fig. S7). The area of Qiyi (or Ningchan No.1) Glacier is 
not smaller when compared to other glaciers in the Qilian 
Mountains. In addition, there are 74 glaciers with areas > 1.0 
 km2 and 27 glaciers with areas > 2.0  km2 in the western Qil-
ian Mountains, while there are 16 glaciers with areas > 1.0 
 km2 and 3 glaciers with areas > 2.0  km2 in the eastern Qilian 
Mountains. The area of the largest glacier is smaller than 3 
 km2 in the eastern Qilian Mountains and is more than 20 
 km2 in the western Qilian Mountains. Above all, the west-
ern Qilian Mountains have more large glaciers and a higher 

average glacier area when compared to the eastern Qilian 
Mountains. The area of Qiyi Glacier is also larger than that 
of Ningchan No.1 Glacier.

Hypsography is another topographic variable that may 
impact multidecadal averages and variability of individual 
and regional glacier mass balance (Brun et al. 2019; Zhu 
et al. 2018b). Glaciers in the eastern Qilian Mountains are 
distributed at relatively lower altitudes than glaciers in the 
western Qilian Mountains (Fig. S8), due to higher precipita-
tion in the eastern Qilian Mountains (Table S3). The median 
elevation of glaciers (where elevation divides glacier area 
equally) is presumed to be at the equilibrium-line altitude, 
such that mass balance is zero at that elevation (Sakai et al. 
2015). The median elevation provides a good index to under-
stand the difference in altitude distribution of glaciers in 
different regions of the TP. The median elevations were 
4780 and 4400 m a.s.l. for Qiyi and Ningchan No.1 glaciers, 
respectively. The median elevations were 4820 m a.s.l. for 
682 selected glaciers in the western Qilian Mountains and 
4500 m a.s.l. for 169 selected glaciers in the eastern Qil-
ian Mountains (Figs. S7 and S8). Thus, the difference of 
median elevations between Qiyi and Ningchan No.1 glaciers 
was 380 m a.s.l, which is similar to the difference between 
the larger sets of glaciers in the western and eastern Qilian 
Mountains (320 m a.s.l.).

Fig. 10  a Correlation fields 
(p < 0.05) between detrended 
sea surface temperature and 
detrended regionally-averaged 
air temperature index during the 
ablation season from 1970 to 
2015 using the Pearson correla-
tion analysis. b Differences in 
the mean 500 hPa geopotential 
heights (gpm) and wind speed 
field from JAR55 between 
1995–2015 and 1970–1994 dur-
ing the ablation season (June–
September) (1995–2015 minus 
1970–1994). The green dot 
and green square denote Qiyi 
and Ningchan No.1 glaciers, 
respectively
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4.2.2  Regional climate variables driving the increase 
in glacier mass loss rate across the Qilian Mountains 
during 1970–2015

The mean annual mass balance during 1995–2015 was 
more negative on Qiyi and Ningchan No.1 glaciers than 
during 1970–1994 due to higher ablation-season meltwa-
ter during 1995–2015 (Fig. 3 and Table 5). Differences in 
ablation-season Sin, Hsen, Hlat and G between 1970–1994 
and 1995–2015 were small for the two glaciers (Table 6). 
The absolute values of Lout and QPS during 1995–2015 
were higher than those during 1970–1994, indicating that 
changes in these two components can not contribute to the 
higher absolute value of melt energy during 1995–2015 
(Table 6). Thus, differences in Lin and Sout related to albedo 
caused different melt energy in the ablation season between 
1970–1994 and 1995–2015 for the two glaciers. According 
to the most parameterizations for Lin (Crawford and Duchon 
1999; Yang et al. 2001; Zhu et al. 2017), we can find that 
Lin can be influenced by cloud cover, Ta, and humidity. The 
cloud cover is always calculated using the ratio of the Sin to 
the incoming shortwave radiation at the top of the atmos-
phere (STOA), such as n = 1-(Sin/STOA) (Crawford and Duchon 
1999) and n = 1.3–1.4(Sin/STOA) (Favier et al. 2004b). For the 
two glaciers, the difference in ablation-season Sin between 
1970–1994 and 1995–2015 was small (Table 6), indicating 
that cloud cover was similar between the two periods. And 
the difference in ablation-season RH between 1970–1994 
and 1995–2015 was also small (Table 5). From 1970–1994 
to 1995–2015, ablation-season glacier-wide precipitation 
was increased for Qiyi Glacier and was slightly reduced for 
Ningchan No.1 Glacier, however, ablation-season glacier-
wide snowfall was slightly decreased for Qiyi Glacier and 
was significantly decreased for Ningchan No.1 Glacier due 
to less precipitation falling as snow (Fig. 6 and Table 5). 
Thus, higher Ta led to higher Lin, and less snowfall in the 
ablation season for the two glaciers during 1995–2015 when 
compared to 1970–1994 (Tables 5 and 6). From 1970–1994 
to 1995–2015, the decreased snowfall and increased melt 
related to increased Lin can cause the decreased albedo in the 
ablation season, which furtherly increased melt for the two 
glaciers. Thus, through increasing Lin and reducing snowfall, 
the increased ablation-season Ta was considered as the pri-
mary cause of lower mass balance during 1995–2015 when 
compared to 1970–1994. 

We furtherly evaluate the contributions of changing 
ablation-season Ta and annual precipitation to changes in 
mass balance from 1970–1994 and 1995–2015 for Qiyi 
and Ningchan No.1 glaciers using sensitivity analysis 
(Table S5). To account for the difference in mean ablation-
season Ta between 1970–1994 and 1995–2015 at Qiyi and 
Ningchan No.1 glaciers, the EMB model was rerun with 
− 1.3 and − 1.1 °C changes in the daily mean Ta in the Ta
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ablation season during 1995–2015 for Qiyi and Ningchan 
No.1 glaciers, respectively. Ta in other periods, and other 
variables, remained unchanged. The recalculated average 
annual mass balance during 1995–2015 is similar to the 
average annual mass balance during 1970–1994 for Qiyi 
and Ningchan No.1 glaciers (Table S5), indicating that 
increasing ablation-season Ta accounted for almost all the 
mass loss from 1970–1994 and 1995–2015. In addition, the 
EMB model was rerun with a − 7.1% and 3.9% change in 
daily precipitation during 1995–2015 on Qiyi and Ningchan 
No.1 glaciers, respectively, to calculate the contribution of 
annual precipitation change to mass balance change from 
1970–1994 and 1995–2015 (Table S5). The corresponding 
deviations for mean annual mass balances during 1995–2015 
resulting from the precipitation variability are only − 77 and 
62 mm w.e.  a−1 for Qiyi and Ningchan No.1 glaciers, respec-
tively. The results confirm that higher ablation-season Ta was 
the main driver of the greater mass loss during 1995–2015 
than during 1970–1994 at the two glaciers, and of the higher 
mass-loss rate of Ningchan No.1 Glacier compared to Qiyi 
Glacier.

The influence of increased ablation-season Ta on increas-
ing glacier mass loss from 1970–1994 to 1995–2015 is 
mainly attributed to two processes: first the reduction in 
precipitation falling as snow, and second the enhanced melt 
from increasing Lin and associated feedbacks. We further 
estimated the contributions of these two processes to the 
increasing mass loss of the two glaciers (Table S6). Our 
data show that 43% (or 63%) and 33% (or 22%) of the 
increased mass loss from 1970–1994 to 1995–2015 result 
from reduced precipitation falling as snow and increasing Lin 
on Qiyi (or Ningchan No.1) Glacier, respectively (Table S6). 
Under the influence of increased Ta from 1970–1994 to 

1995–2015, the reduction in precipitation falling as snow 
plays a more important role in the increased mass loss from 
1970–1994 to 1995–2015 when compared to the enhanced 
melt from increasing Lin. In addition, under similar warm-
ing conditions, the influence of reduced precipitation fall-
ing as snow on mass balance change is more significant for 
Ningchan No.1 Glacier than for Qiyi Glacier.

All stations near the Qilian Mountains show that ablation-
season Ta during 1995–2015 was about 1 ºC higher than dur-
ing 1970–1994 (Table S3). Yuan et al (2021) also indicated 
that the northern TP, including Qilian Mountains, had the 
highest warming rate during the last several decades. In addi-
tion, ablation-season Lin increased, ablation-season snowfall 
and the ratio of ablation-season snowfall to ablation precipi-
tation decreased from 1970–1994 to 1995–2015 across the 
Qilian Mountains (Fig. S9). Meanwhile, the reduced abla-
tion-season snowfall was larger in the eastern Qilian Moun-
tains than in the western Qilian Mountains (Fig. S9). These 
variations can cause the accelerated glacier mass loss in the 
Qilian Mountains from the 1970s–1990s to 1990s–2010s. 
This view is verified by the reconstructed mass balances 
for single glaciers and regional glaciers in different regions 
of the Qilian Mountains (Fig. 9). The increased ablation-
season Ta over the Qilian Mountains from 1970–1994 to 
1995–2015 was caused by positive 500 hPa geopotential 
height anomalies in Europe (Fig. 10b; Zhang et al. 2021) and 
higher ablation-season SST in Kuroshio and its extension 
area of the Northwest Pacific during 1995–2015 (Fig. 9c) 
through teleconnections, as stated above. Besides the above 
atmospheric circulation, anthropogenic forcing, including 
anthropogenic greenhouse gases and aerosol emissions, are 
also important in inducing the warming on the TP over the 
last several decades (Yao et al. 2019).

Table 6  The glacier-wide 
energy balance components (W 
 m−2) in the ablation season for 
different periods on Qiyi and 
Ningchan No.1 glaciers

The values in the bracket are standard deviations of the detrending variables
TS is glacier surface temperature

Qiyi Ningchan No.1

1970–1994 1995–2015 1970–2015 1970–1994 1995–2015 1970–2015

Sin 220 220 220 (8) 241 235 238 (7)
a 0.66 0.59 0.63 0.7 0.59 0.65
Sout − 146 − 130 − 139 (10) − 169 − 138 − 155 (14)
Snet 74 90 81 (9) 72 97 83 (12)
Lin 255 262 258 (4) 261 268 264 (4)
Lout − 300 − 306 − 303 (2) − 307 − 310 − 308 (2)
Lnet − 45 − 44 − 45 (3) − 46 − 42 − 44 (3)
Hsen 5 6 6 (1) 6 5 6 (1)
Hlat − 15 − 18 − 16 (3) − 4 − 3 − 4 (1)
QPS − 9 − 13 − 11 (2) − 9 − 14 − 11 (3)
G 3 3 3 (2) 6 2 4 (2)
QM 13 24 18 (7) 25 45 34 (10)
TS − 3.5 − 2.2 − 2.9 − 1.9 − 1.2 − 1.6
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4.2.3  Differences in interdecadal mass changes 
between Qiyi and Ningchan No.1 glaciers

The mass balance change rate (MBCR) is defined as that 
mean annual mass balance during 1995–2015 minus that 
during 1970–1994. The MBCR is − 778 mm w.e.  a−1 at 
Ningchan No.1 Glacier, which is 385 mm w.e.  a−1 lower 
than that at Qiyi Glacier (Table 5). As stated above, from 
1970–1994 and 1995–2015, a 1 ºC increase in ablation-sea-
son Ta at the two glaciers has led to higher mass-loss rates 
at Ningchan No.1 Glacier than at Qiyi Glacier. This means 
that the mass balance sensitivity to Ta change is higher at 
Ningchan No.1 Glacier than at Qiyi Glacier. Oerlemans 
et al (1998) and Liu and Liu (2016) found that the higher 
sensitivity to Ta change may result from a lower glacier area-
altitude distribution. And glacier area-altitude distribution 
at Ningchan No.1 Glacier is lower than at Qiyi Glacier. 
Thus, we thought that different glacier hypsography is a 
factor causing larger mass loss at Ningchan No.1 Glacier 
than at Qiyi Glacier between 1970–1994 and 1995–2015. 
To test this point, we reran the EMB model for Qiyi Glacier 
with the area-altitude of Ningchan No.1 Glacier, and for 
Ningchan No.1 Glacier with the area-altitude of Qiyi Gla-
cier. To remove the influence of decreased ablation-season 
precipitation from 1970–1994 and 1995–2015 on mass bal-
ance change for Ningchan No.1 Glacier, daily precipitation 
in the ablation season during 1995–2015 at Menyuan sta-
tion was multiplied by 1.122 to make mean ablation-season 
precipitation during 1995–2015 1.087 times larger than that 
during 1970–1994, reflecting differences at Tuole station 
between these periods. These recalculations show differ-
ences in mass balance between 1970–1994 and 1995–2015 
of − 548 mm w.e.  a−1 for Qiyi Glacier and − 218 mm w.e. 
 a−1 for Ningchan No.1 Glacier (Table S5), and the new 
MBCR is 330 mm w.e.  a−1 higher at Ningchan No.1 Gla-
cier than at Qiyi Glacier. This finding is contrary to the 
result from the control run, in which MBCR is 385 mm 
w.e.  a−1 lower at Ningchan No.1 Glacier than that at Qiyi 
Glacier. The results confirm that lower glacier area-altitude 
distribution is the largest contributor causing larger mass 
loss at Ningchan No.1 Glacier than Qiyi Glacier between 
1970–1994 and 1995–2015, accounting for 330 mm w.e. 
 a−1 of the 385 mm w.e.  a−1 larger mass loss at Ningchan 
No.1 Glacier from 1970–1994 and 1995–2015 when com-
pared to Qiyi Glacier. The explanation for this result is that 
a higher glacier area-altitude distribution for Qiyi Glacier 
can cause more precipitation to fall as snow, therefore lead-
ing to higher albedo and lower melt energy in the ablation 
season on Qiyi Glacier when compared to Ningchan No.1 
Glacier (Table S7).

In addition, the mean ablation-season glacier-wide pre-
cipitation was 32 mm  a−1 higher during 1995–2015 than 
1970–1994 on Qiyi Glacier, while it was 21 mm  a−1 lower 

during 1995–2015 than 1970–1994 at Ningchan No.1 Gla-
cier (Table 5). Such different ablation-season precipitation 
change can also play a role in the higher mass-loss rate of 
Ningchan No.1 Glacier than Qiyi Glacier from 1970–1994 
and 1995–2015. To support the above interpretation, we car-
ried out a sensitivity analysis for Ningchan No.1 Glacier. 
We reran the EMB model for Ningchan No.1 Glacier with 
daily precipitation in the ablation season at Menyuan sta-
tion during 1995–2015 multiplied by 1.122, while keeping 
other variables unchanged. This adjustment makes the pre-
cipitation change from 1970–1994 and 1995–2015 similar 
at the two glaciers. The recalculated MBCR is 62 mm w.e. 
 a−1 higher than that from the control run on Ningchan No.1 
Glacier (Table S5). The results show that the difference in 
ablation-season precipitation changes from 1970–1994 and 
1995–2015 contributes a small part (62 mm w.e.  a−1) of the 
difference in MBCR (385 mm w.e.  a−1) between Ningchan 
No.1 and Qiyi glaciers.

4.2.4  Spatial differences in interdecadal glacier mass 
changes between the western and eastern Qilian 
Mountains

Considering that ablation-season Ta is about 1ºC higher dur-
ing 1995–2015 than during 1970–1994 at 10 stations across 
the Qilian Mountains (Table S3), we furtherly analyze the 
spatial difference in regional glacier hypsography (area–ele-
vation distribution) and seasonal precipitation changes to 
obtain the knowledge about spatial differences in interdec-
adal changes in glacier mass balance between the western 
and eastern Qilian Mountains. According to the statement 
in Sect. 4.2.1, we find that glaciers in the eastern Qilian 
Mountains are distributed at relatively lower altitudes than 
glaciers in the western Qilian Mountains (Figs. S7 and S8). 
And the difference of median elevations between the larger 
sets of glaciers in the western and eastern Qilian Mountains 
is similar to that (380 m a.s.l.) between Qiyi and Ningchan 
No.1 glaciers.

In addition, the mean ablation-season precipitation during 
1995–2015 was higher than that during 1970–1994 in the 
western Qilian Mountains, while mean precipitation in the 
ablation season (especially in June–August) for 1995–2015 
was lower than that during 1970–1994 in the eastern Qil-
ian Mountains (Table S3). Those spatial differences in 
interdecadal change of ablation-season precipitation in the 
western and eastern Qilian Mountains were caused by dif-
ferent regional atmospheric circulation changes between 
the two regions. Figure 10b reveals that the eastern bound-
ary of the TP appears to have been dominated by stronger 
easterly wind anomalies during 1995–2015 compared with 
1970–1994. This circulation pattern reduces water vapor on 
the TP which can export along the eastern boundary of the 
TP (Zhou et al. 2019). Thus, higher water vapor can remain 
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on the TP during 1995–2015 than 1970–1994. The warmer 
and wetter conditions on the TP made the atmosphere more 
unstable, triggering deeper convective cloud systems, which 
yielded more precipitation in the western Qilian Mountains 
during 1995–2015 compared with 1970–1994 (Yang et al. 
2014). Figure 10b also shows that northerly air flow anoma-
lies at the eastern margin of the southern TP indicate weaker 
southerly winds during 1995–2015 than during 1970–1994, 
which reduced the monsoonal moisture arriving into the 
eastern Qilian Mountains. These patterns may be related 
to a weakening of the Asian Summer Monsoon (Yang et al. 
2014; Yao et al. 2012).

Therefore, we can deduce that the lower glacier area-
altitude distribution and the reduction of ablation-season 
precipitation can favor the larger glacier mass loss rate 
from 1970–1994 and 1995–2015 in the eastern Qilian 
Mountains when compared to glaciers in the western Qil-
ian Mountains. This view is verified by that the regionally-
averaged glacier mass balance was about 520 mm w.e.  a−1 
lower during 1995–2013 than during 1972–1994 in the Len-
glongling Mountains, in the eastern Qilian Mountains (Cao 
et al. 2019), while the average glacier mass balance was 
about 340 mm w.e.  a−1 lower during 1995–2013 than dur-
ing 1972–1994 in the Beida River catchment of the western 
Qilian Mountains (Wang et al. 2017) (Fig. 9c).

5  Conclusion

Time-series of mass balance from 1970 to 2015 on Qiyi Gla-
cier in the western Qilian Mountains and on Ningchan No.1 
Glacier in the eastern Qilian Mountains were reconstructed 
using the EMB model. The model was calibrated by in-situ 
mass balance data and validated by parts of measured mass 
balance data, modelled mass balance data from the pub-
lished papers, and geodetic mass balance data. Based on our 
study and published glacier mass balance data, we find that 
interannual changes in glacier mass balance generally fol-
low similar patterns across the Qilian Mountains, which are 
primarily related to changes in ablation-season Ta, because 
Ta mainly affects snowfall (precipitation phase) and Lin, 
which further influences albedo and melt. Such consistent 
interannual changes of glacier mass balance can be linked 
to the combination of changes in atmospheric circulation in 
Europe and SST in the Kuroshio and its extension area of 
the Northwest Pacific by changing ablation-season Ta. In 
addition, the average glacier mass balance was more nega-
tive during 1995–2015 than during 1970–1994 across the 
Qilian Mountains, because higher ablation-season Ta drove 
lower snowfall (with more precipitation falling as rain) and 
larger Lin, both of which contributed to lower surface albedo 
and higher melt energy during 1995–2015. The higher abla-
tion-season Ta during 1995–2015 than during 1970–1994 

appears to be linked with positive ablation-season 500 hPa 
geopotential height and anticyclonic anomalies in Europe 
and higher ablation-season SST in the Northwest Pacific in 
1995–2015. Lastly, glacier mass loss rates were higher in the 
eastern Qilian Mountains than in the west from 1970–1994 
and 1995–2015, mainly due to the lower glacier area-alti-
tude distribution, as well as the reduction in ablation-season 
precipitation, in the eastern Qilian Mountains. This work 
hopes to provide a method or thinking to comparative ana-
lyze the spatiotemporal variability of glacier mass balance 
in different regions of the same glacierized massif on the 
TP and its surrounding areas associated drivers. We should 
note here that our results are mainly based on the modelled 
mass balance of only several typical glaciers across the Qil-
ian Mountains. Long-term glacier mass balance monitoring 
is required to study the complex relationship between gla-
ciers and climate in the Qilian Mountains and other regions 
(Wagnon et al. 2013; Yao et al. 2012). And the combina-
tion of multi-source data (reanalysis data, measured mete-
orological and glaciological data, and remote sensing data) 
with glacier models, the regional glacier mass balance in 
the Qilian Mountains or another glacierized massif can be 
reconstructed in future studies, which will help to improve 
the knowledge of the spatiotemporal patterns of glacier mass 
balance and meltwater on the TP.
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