PNAS www.pnas.org

1	
2 3	Supplementary Information for
4 5	Use of $\delta^{18}O_{atm}$ in dating a Tibetan ice core record of Holocene/Late Glacial climate
6 7 8 9 10	Lonnie G. Thompson*, Jeffrey P. Severinghaus [*] , Tandong Yao, Mary E. Davis, Ellen Mosley Thompson, Emilie Beaudon, M. Roxana Sierra-Hernández, Stacy E. Porter
11 12 13 14 15 16 17 18 19 20 21 22 23 24	*Corrresponding authors: Jeffrey P. Severinghaus Geosciences Research Division Scripps Institution of Oceanography University of California at San Diego 9500 Gilman Dr. #0244 La Jolla, CA 92093-0244 Lonnie G. Thompson Byrd Polar and Climate Research Center The Ohio State University 1090 Carmack Rd. Columbus, OH 43210
25 26 27 28 29 30 31 32 33	This PDF file includes: Supplementary text Figures S1 to S5 Tables S1 to S5 SI References

34 Supplementary Information Text

35 S1. Timescale reconstruction

36 S1.1 Annual layer counting from 1840 to 2015 CE

37	Very low accumulation (0.2 to 0.3 m water equivalent a^{-1})(1) and post-depositional alteration of the
38	snow on the Guliya ice cap complicates the process of distinguishing annual layers with the degree of
39	precision that is possible for higher accumulation ice cores. Annual time series for the GP core and a
40	nearby shallow core were reconstructed from 1840 to 2014 CE (1). However, without well-defined
41	seasonal variations and calibration horizons below the 1963 CE (12.0 m) beta horizon (from 90 Sr and
42	¹³⁷ Cs decay) resulting from the 1962/63 Arctic thermonuclear tests, the range of age uncertainty
43	increases with depth. Thus, we did not extend the annual layer counting below 1840 CE.
44	Surface snow on the Guliya plateau, which in the summer is only ~1 meter thick, is
45	metamorphosed to ice within one year. Therefore, the Guliya plateau is composed of superimposed
46	ice that lacks an upper firn section. The high levels of solar radiation, coupled with warm summer

47 temperatures, melt the surface snow which quickly refreezes at this altitude. This is confirmed by the 48 recovery of several shallow cores around the Guliya plateau in 1990 and 1991, in addition to the deep 49 core drilled in 1992. Since each year's snow is at least partially melted and refrozen in place without 50 lateral mass displacement, the water isotopes and aerosols are "fixed" in the column and elution of the 51 major ions does not occur, although the partially melted and refrozen snow may be more enriched in 52 ¹⁸O.

In contrast to the Guliya plateau, the upper 25 m of the Guliya summit cores contain firn, albeit
with numerous ice layers. A 1.5 m snow pit excavated and sampled on the Guliya summit in 1991
showed well-defined seasonal variations in δ¹⁸O_{ice} and mineral dust over the previous 1.5 years (1).
However, below the most recent snow layers, the δ¹⁸O_{ice} records in the Guliya summit cores lack
seasonal definition, i.e., the quasi-seasonal ¹⁸O depletion (indicating winter) observed in the GP core

58	record is absent from the summit cores (Fig. S1). Intense air circulation may ventilate the firm in the
59	upper meters on the Guliya summit, resulting in removal of the lighter isotopes through sublimation.
60	This type of isotopic enrichment has been observed in Antarctica (2).

Despite the stratigraphic differences between these two Guliya drill sites, many timescale
horizons from 1840 to 2014 CE in the GP core (1) can be transferred to GS3 by broad δ¹⁸O_{ice}
matching (Fig. S1, Table S1). Note that the 1962/63 depth in the GP long core, marked by a beta
activity peak, is deeper than that in the GP shallow core that was presented in Thompson et al. (2018)
(1). These transferred points are used as timescale calibration markers in the development of the 5th
order polynomial from which the GS3 timescale between -0.1 and 4.4 ka BP is calculated (Fig. 3*B*).

67 *S1.2 Radiocarbon dating*

68 Five plant fragments were observed and isolated in the GP core and in GS2. The samples were prepared at BPCRC for ¹⁴C AMS analyses performed at WHOI NOSAMS and ETH in Zurich (Table 69 S2). All sample masses were small (21.5 to $64 \ \mu g$ C) and the radiocarbon dates were calibrated using 70 the CALIB Rev 8.0.1 radiocarbon calibration program (3) with the Intcal20.14c calibration data set 71 (4). The ¹⁴C ages of the plant fragments in the GP core at 35.67 and 51.40 m fell within the late 19th 72 century and had \pm errors nearly as large as the calibrated ages. The ¹⁴C age for the lowest mass 73 sample (21.5 µg C) found at 101.64 m (38.12 m in GS3) was stratigraphically anomalous and thus not 74 used in the polynomial function between -0.1 and 4.4 ka BP. 75

76 S2. Abbreviations

77	CE	Common Era, more commonly referred to as AD
78	$\delta^{18}O_{air}$	Ratio of oxygen isotopes (^{16}O , ^{18}O) of O_2 in the air bubbles in the glacier ice
79	$\delta^{18}O_{ice}$	Ratio of oxygen isotopes (¹⁶ O, ¹⁸ O) of water in the glacier ice
80	GP	Guliya plateau
81	GP core	The core drilled to bedrock in 2015 on the Guliya Plateau

90Fig. S1. $\delta^{18}O_{ice}$ matching between the GP core (red) and GS3 (blue) from 1840 to 201491CE. The individual $\delta^{18}O$ samples for the GP core are shown along with 41-sample moving92averages (black solid line). The individual $\delta^{18}O_{ice}$ samples for GS3 are shown without93smoothing. The top meter of the GS3 core was composed of snow and low-density firn which94had compacted during transport from the field to the lab. The 1962/63 CE thermonuclear95horizon was identified in both cores by high levels of beta (β) activity, thus establishing a96definite tie point.

101 comparison, a typical ~ 2 km altitude polar ice sample has an air content of 0.1 in these units.

Fig. S3. GS3 δ¹⁸O_{atm} corrected values plotted with depth. Closed red triangles indicate δ¹⁸O_{atm}
values from samples to which neon was added, while closed blue squares indicate values from
samples to which neon was not added. Several of the samples were measured twice, including GS3T48-1 (47.11 m) and GS3-T48-2 (47.74 m) (connected by double arrows). The data point (GS3-T501) marked by the open blue square, to which neon was not added, is anomalously high, possibly due
to the inadvertent incorporation of ¹⁸O enriched outer layers of the ice during sample preparation.

117 curve, each sample) and the GP core (blue curve, 11-sample running means).

121 Fig. S5. Temperature records (average May to September) from seven meteorological stations

122 (locations shown on map) in the western TP compared with annual averages of $\delta^{18}O_{ice}$ from the

123 GP core since 1950 CE. The stacked bar graph shows monthly precipitation at these stations over the

- same time periods as the temperature records. Approximately 85% of the annual precipitation occurs
- 125 between May and September. Temperature and precipitation data were obtained from the National
- 126 Meteorological Information Center of the China Meteorological Administration (CMA)
- 127 (http://data.cma.cn).

128 Table S1. Depths in the GP core and GS3 every 10 years from -0.06 to 0.11 ka BP (before 1950

129 CE) (1840 to 2010 CE).

Depth in	Corresponding	Calendar	ka BP
2015GP (m)	depth in GS3 (m)	year CE	
1.79	0.47	2010	-0.06
4.26	1.41	2000	-0.05
6.84	3.82	1990	-0.04
8.65	5.36	1980	-0.03
11.10	7.49	1970	-0.02
13.47	8.91	1960	-0.01
15.35	9.99	1950	0
17.11	10.78	1940	0.01
18.59	11.37	1930	0.02
20.70	12.21	1920	0.03
22.94	13.09	1910	0.04
24.52	13.73	1900	0.05
26.61	14.57	1890	0.06
27.79	15.13	1880	0.07
29.22	15.80	1870	0.08
30.91	16.70	1860	0.09
32.84	17.76	1850	0.10
34.05	18.24	1840	0.11

132 Table S2. ¹⁴C AMS data from plant fragments from GS2 and the GP core and their

133

131

corresponding depths in GS3.

Core	Depth (m)	Corresponding	Mass (µg	¹⁴ C age	Calibrated	Lab
		depth in GS3	C)	(yrs	age (yrs	
		(m)		before	before 1950	
				1950 CE)	CE)	
GS2	41.90	41.50	64	3940±35	4387±37	NOSAMS [#]
GP	35.67	18.85	64	105±25	69±45	NOSAMS
core	51.40	22.60	61.5	100±60	85±56	ETH^*
	89.70	35.00	28	1430±45	1325±26	NOSAMS
	101.64	38.10	21.5	830±70	735±56	ETH

[#]National Ocean Sciences Accelerator Mass Spectrometry, Woods Hole Oceanographic

135 Institution

136 *Swiss Federal Institute of Technology

Table S3. Conventional data measured on GS3 samples (to which neon was added) prior to

making the corrections.

Lab sample ID	Depth (m)	δ ¹⁵ N (‰)	δ ¹⁸ O of O ₂ (‰)	O ₂ /N ₂	Ar/N ₂	$\delta^{18}O_{atm}$	Total air content mL STP/g
GS3-T30-1	29.96-29.99	0.080	0.699	32.52	106.78	0.540	0.008
GS3-T39-1	38.82-38.85	-0.006	0.127	-0.53	9.51	0.138	0.038
		-0.107	-0.113	1.46	4.70	0.100	0.039
GS3-T41-1	40.09-40.12	-0.071	-0.123	-16.19	-8.40	0.020	0.012
GS3-T42-1	41.10-41.13	-0.014	-0.049	1.32	10.08	-0.022	0.036
		-0.009	-0.070	7.90	14.31	-0.052	0.032
GS3-T44-1	43.51-43.54	-0.019	-0.196	15.17	29.59	-0.158	0.024
		-0.006	-0.197	4.32	16.81	-0.185	0.027
GS3-T46-1	45.33-45.36	-0.023	-0.056	16.16	34.37	-0.011	0.029
GS3-T47-1	45.89-45.93	-0.020	0.216	24.95	44.04	0.255	0.017
		-0.005	0.281	15.87	36.45	0.290	0.015
GS3-T48-1	47.09-47.13	0.035	0.946	65.41	90.64	0.875	0.015
		0.017	1.381	28.18	73.43	1.347	0.024
GS3-T48-2	47.72-47.76	0.154	1.342	83.82	160.90	1.034	0.007
		0.127	1.454	66.24	147.19	1.200	0.011
GS3-T49-1	48.11-48.15	0.039	1.143	49.78	79.87	1.065	0.027
		0.057	1.242	38.72	73.22	1.128	0.027
GS3-T49-2	48.55-48.58	0.058	1.007	55.67	72.98	0.891	0.019
GS3-T51-1	50.48-50.51	0.080	1.607	40.06	98.99	1.447	0.009
		-0.163	1.100	42.68	101.52	1.427	0.007
GS3-T52-1	50.51-50.544	0.175	1.827	56.33	132.93	1.476	0.008
		0.194	1.828	46.02	122.35	1.441	0.008

* $\delta^{18}O_{atm}$ is used here as classically defined (= $\delta^{18}O-2\delta^{15}N$), but this is not the true atmospheric value.

143

144 Table S4. Computed values for correction of $\delta^{18}O_{atm}$ for the effects of melt and respiration.

Samples GS3-T30-1, GS3-T39-1, GS3-T41-1, and GS3-T42-1 were not used for the GS3

- 146 timescale construction because the atmosphere's $\delta^{18}O_{atm}$ has relatively little variation in this time
- 147 interval, and because the record above ~6 ka BP can be dated using other techniques. Sample

148 GS3-T52-1 was not used because of the extremely high age/depth interval ratio (>1000 yrs/2 cm).

Lab Sample ID	Depth (m)	δ ¹⁵ N (‰)		O ₂ /N ₂ (‰)	Ar/N ₂ (‰)	O ₂ /Ar (‰)	δ ¹⁸ O _{atm} (‰)	Total air content mL STP/g	${{\rm corrected}\over {\delta^{18}O_{atm}}} \ (\%)$	Inferred age ka BP
GS3- T30-1	29.96- 29.99	0.080	0.699	32.52	106.78	-67.09	0.540	0.008	0.126	NA
GS3- T39-1	38.82- 38.85	-0.006 -0.107	0.127 -0.113	-0.53 1.46	9.51 4.70	-9.95 -3.22	0.138 0.100	0.038 0.039	$\begin{array}{c} 0.088\\ 0.081\end{array}$	NA
GS3- T41-1	40.09- 40.12	-0.071	-0.123	-16.19	-8.40	-7.86	0.020	0.012	-0.089	NA
GS3- T42-1	41.10- 41.13	-0.014 -0.009	-0.049 -0.070	1.32 7.90	10.08 14.31	-8.67 -6.33	-0.022 -0.052	0.036 0.032	-0.071 -0.087	NA
GS3- T44-1	43.51- 43.54	-0.019 -0.006	-0.196 -0.197	15.17 4.32	29.59 16.81	-14.01 -12.28	-0.158 -0.185	0.024 0.027	-0.239 -0.256	6.2
GS3- T46-1	45.33- 45.36	-0.023	-0.056	16.16	34.37	-17.62	-0.011	0.029	-0.114	9.2
GS3- T47-1	45.89- 45.93	-0.020 -0.005	0.216 0.281	24.95 15.87	44.04 36.45	-18.28 -19.85	0.225 0.290	0.017 0.015	0.154 0.173	10.2
GS3- T48-1	47.09- 47.13	0.035 0.017	0.946 1.381	65.41 28.18	90.64 73.43	-23.14 -42.16	0.875 1.347	0.015 0.024	0.783 1.092	11.8
GS3- T48-2	47.72- 47.76	0.154 0.127	1.342 1.454	83.82 66.24	160.90 147.19	-66.39 -70.57	1.034 1.200	$0.007 \\ 0.011$	0.647 0.771	12.4
GS3- T49-1	48.11- 48.15	0.039 0.057	1.143 1.242	49.78 38.72	79.87 73.22	-27.86 -32.15	1.065 1.128	0.027 0.027	0.921 0.944	12.80
GS3- T49-2	48.55- 48.58	0.058	1.007	55.67	72.98	-16.13	0.891	0.019	0.840	13.14
GS3- T51-1	50.48- 50.51	0.080 -0.163	1.607 1.100	40.06 42.68	98.99 101.52	-53.62 -53.42	1.447 1.427	0.009 0.007	1.121 1.103	15.0
GS3- T52-1	50.51- 50.54	0.175 0.194	1.827 1.828	56.33 46.02	132.93 122.35	-67.61 -68.01	1.476 1.441	$\begin{array}{c} 0.008\\ 0.008\end{array}$	1.062 1.021	>16

149

150

153 Table S5. Computed values for correction of $\delta^{18}O_{atm}$ for the effects of melt and respiration for 6

Lab	Depth (m)	$\delta^{15}N$	δ^{18} O of	$\delta O_2/N_2$	δAr/N ₂	Total air	$\delta^{18}O_{atm}$	Inferred
Sample ID		(‰)	O ₂			content (mL	(‰)	age
			(‰)			STP/g)		ka BP
GS3-T43-1	42.30-42.33	0.021	0.000	-2.35	17.99	0.033	-0.137	3.9
GS3-T45-1	44.62-44.67	-0.016	-0.213	2.92	10.83	0.039	-0.236	8.1
GS3-T47-2	46.76-46.79	0.036	0.935	30.78	45.92	0.021	0.778	11.5
GS3-T48-3	47.44-47.47	0.066	1.034	50.92	63.36	0.017	0.861	12.1
GS3-T49-3	48.36-48.40	0.089	1.238	67.15	102.21	0.012	0.890	13
GS3-T50-1	49.34-49.37	0.059	1.596	-32.54	14.83	0.035	1.466*	13-15

154 samples to which neon was not added.

155 *Anomalously high $\delta^{18}O_{atm}$ value

152

157 SI References

158	1.	L. G. Thompson <i>et al.</i> , Ice core records of climate variability on the Third Pole with
159		emphasis on the Guliya ice cap, western Kunlun Mountains. Quat. Sci. Rev. 188, 1-14
160		(2018).
161	2.	T. A. Neumann, E. D. Waddington, E. J. Steig, P. M. Grootes, Non-climate
162		influences on stable isotopes at Taylor Mouth, Antarctica. J. Glaciol. 51, 248-258
163		(2005).
164	3.	M. Stuvier, P. J. Reimer, Extended 14 C data base and revised CALIB 3.0 14 C age
165		calibration program. Radiocarbon 35, 215-230 (1993).
166	4.	P. J. Reimer et al., The Intcal20 Northern Hemisphere radiocarbon age calibration
167		curve (0-55 cal kBP). Radiocarbon 62, 725-757 (2020).

168 5. D. Paillard, L. Labeyrie, P. You, Analyseries 1.0: A Macintosh software for the
analysis of geographical time-series. *Eos* 77, 379 (1996).

¹⁵⁶