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• Global wildfires incidence is tightly de-
pendent on Atlantic SST.

• Maximum PFI matches 80 % of observed
fires.

• Fire impact of short-term precipitation is
dependent on local vegetation.
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Studies and observations have pointed out that recentwildfires have beenmore severe and burned area is increasing in
tropical regions. The current study aims at investigating the influence of oceanic climate modes and their
teleconnection on global fire danger and trends in the 1980–2020 interval. Disentangling these trends demonstrates
that across the extratropics they are primarily related to increases in temperature, whereas in the tropics changes in
short-term precipitation distribution dominates the trends. Moreover, the environmental impact of short-term precip-
itation is dependent on local vegetation type and tightly related to oceanic temperatures far from the burned areas. In-
deed, in the 2001–2020 period, a warmer tropical North Atlantic was associated with more fires in the Amazon and
Africa, whereas ENSO has weakened the fire activity in equatorial Africa. The remarkable impact of oceanic modes
of climate variability in inducing environmental conditions conducive tofires, has particular relevance for the seasonal
spatiotemporal wildfire forecasts. Although local aspects are crucial forfiremanagement, long-term predictions should
take into account the behavior of potential climate drivers located far from the region of interest. Such teleconnections
can be identified ahead of local weather anomalies.
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1. Introduction

Shifts of local climate and weather are associated with surface condi-
tions and oceanic far-reaching disturbances (Liu and Alexander, 2007). In-
creased deforestation and urbanization are associated in most cases with
local higher temperatures and more frequent torrential rains (Chapman
ril 2023
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et al., 2017; DeFries et al., 2010). Notwithstanding, fluctuations of oceanic
characteristics originated far from a particular region play an important
role to anomalous climate conditions elsewhere, known as teleconnections
(Wallace and Gutzler, 1981).

Fires have been in the forefront of global issues due to their influence on
ecosystem dynamics and populationwelfare. Earl and Simmonds (2018) in-
vestigating spatial and temporal variability of fire found a decline in active
fires globally, but regional analyses demonstrated increased fire activity in
China and India due to rapid agricultural intensification. Elucidation of
drivers of the recent increase in wildfire destructiveness and frequency,
urges interdisciplinary strategies involving weather monitoring and neces-
sary land surface management. Attribution of causes have frequently been
associated with increased temperature linked to global warming, changes
in ocean/atm teleconnections and deforestation related to the expansion
of agricultural activities (Zhao et al., 2022; Wang and Cai, 2020; Shi and
Touge, 2022).

Surprisingly, the medium-term effect of droughts and dry spells on re-
gional and local fire has not been properly estimated, which frequently
lead to misrepresentation of regional vulnerability to fires (Richardson
et al., 2022). Limited understanding andfire forecast skill arise from assum-
ing that reduced fire danger and lower probability of fires, result from oc-
currences of precipitation within an individual day or short-time period.
Instead, efforts should bemade to characterize in detail changes in the tem-
poral distribution of precipitation, and how those changes interact with
vegetation to produce combustible material necessary for fire initiation.

Urban and rural localities have been affected by local or distant wildfire
(Iglesias et al., 2022; Karanasiou et al., 2021) events, which include forest,
agricultural and bush fires. The overall consensus is that higher tropo-
spheric temperatures increase the frequency of large fires by modifying
vegetation characteristics due to reduced soil and plant moisture (Le Page
et al., 2015; Justino et al., 2022). Indeed, analyses of temperature evolution
during the recent decades exhibit an upward warming trend, with large
values in particular across the subtropical and extratropical latitudes of
the Northern Hemisphere (Ades et al., 2020). Tian et al. (2022) argued
that forest fires contribute to 60 % of the total fire counts in Northern Eur-
asia, whereas cropland contributing to 66 % of the decrease trend across
southwestern part.

Nonetheless, vegetation greening/browning is dominated by radiation
in rainforest zones, by precipitation in arid and semiarid areas, and by tem-
perature at high latitudes (Blok et al., 2011; Wu et al., 2015; Nemani et al.,
2003). Hence, the sensitivity of vegetation to temperature should be
analysed locally due to plant type characteristics, and their response to
the thermal forcing. Estimates of past, current or future fire behavior and
danger based solely on temperature do not depict the global picture and
may lead to misinterpretation without including daily precipitation distri-
bution (Justino et al., 2022).

Unfavorable intraseasonal and interannual variability of precipitation
lead to higher vulnerability to fire across forest, grassland, savannas, tun-
dra, and shrub-lands, with respect to estimates solely based on the vegeta-
tion response to temperature (Lasslop and Kloster, 2017). Because the
frequency of precipitation as measured by number of rainy days substan-
tially advances the leaf onset date (Wang et al., 2022b), the amount of igni-
tion sources increases during the fire season.

Methods to estimate fire weather danger have efficiently identified fire-
prone regions, and major efforts have been spent to quantify the individual
contributions of weather variables to fire danger (Jain et al., 2021; Zhang
et al., 2021; Da Silva et al., 2021; Dowdy et al., 2010). Surface temperature
and relative humidity have been responsible for trends in Fire Weather
Index (FWI) (Van Wagner and Forest, 1987). For almost half of the Earth's
burnable surface, according to Jain et al. (2021). This conclusion should
be viewedwith caution because the attribution of the dominant cause of in-
creased fire danger to temperature and humidity may neglect the crucial
role of daily and intra-seasonal distribution of precipitation (Varga et al.,
2022). The FWI system includes daily precipitation as an input to calculate
three fuel moisture codes at different soil depths (representing dead fuel
moisture). This also accounts for intra-seasonal variations in precipitation
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and the cumulative effects of long term drought through the drought code
which has a long equilibrium drying time (53 days) (Van Wagner and
Forest, 1987).

Observed hotspots have been found across regions dominated by low
fire danger northward of 40°N, due to drawbacks in FWI for representing
the vegetation-precipitation relationship (Justino et al., 2021). The scale
of attributing the magnitude of the fire danger in FWI, leads for instance
in the Balkans/central Asia to fires within FWI lower the 25 (Justino
et al., 2021), and this does not contribute to have a reasonable fire forecast.

The FWI was originally designed for a standard pine forest in boreal lat-
itudes (Van Wagner and Forest, 1987), and other biomes are not well sam-
pled. This limitation in FWI has been partially alleviated by the Potential
Fire Index (PFI) that takes into account the role of different vegetation
types and time evolving precipitation in the preceded 120 days (Justino
et al., 2011; Da Silva et al., 2021). The PFI is able to identify regions
prone to fire development, as demonstrated by the satellite detected-fire
in the 2001–2016 interval. It is found that PFI delivers an efficiency by
up to 80 % in matching the observed fires from Terra/MODIS satellite
(Da Silva et al., 2021).

The current study investigates the main causes of fire weather trends
from 1980 to 2020 based on fire weather indices, meteorological variables,
satellite-based hotspots and burned areas. The relationship between fire
danger and fire occurrences with large-scale oceanic modes are also ex-
plored in detail. The far-reaching effect of anomalous patterns of large-
scale climatic modes of variability affect the burned area and the incidence
of fires substantially (Shi and Touge, 2022; Le Page et al., 2008; Jolly et al.,
2015). Therefore, past and present influences of El-Niño-Southern Oscilla-
tion (ENSO), the Atlantic Ocean variability for instance, are analysed to elu-
cidate changes in the fire season, contributing to foresee future extreme
fires even in areas not currently affected.

2. Methods and data

The Climate Prediction Center (CPC) dataset, which includes weather
stations and several additional observational data for precipitation and
temperatures, has been chosen for the PFI calculation because Da Silva
et al., 2021 demonstrated higher capability of this index to reproduce re-
gions with observed fires, in comparison to similar calculations based on
ERA5. It should be emphasized that no differences are noted by comparing
the regions with higher PFI based on CPC and ERA5. All dataset currently
utilized here are interpolated to the 0.5 × 0.5°. Slight differences are
found only in the magnitude values. However, the ERA5 relative humidity
is currently used because this variable is not available in the CPC datasets.
After downloading the datasets, the Climate Data Operators (CDO) and
NCAR command Language (NCL) have been applied to compute the PFI
on daily basis. The ERA5 hourly data on pressure levels from 1980 to
2020 data has been downloaded from https://cds.climate.copernicus.eu/
cdsapp!/dataset/. Both datasets have been retrieved in February 2022.

The FWI system (https://cds.climate.copernicus.eu/) provides fire dan-
ger information following the European Forest Fire Information System
(EFFIS) based on the ERA5 dataset. Additional details on FWI characteris-
tics may be found at https://cwfis.cfs.nrcan.gc.ca/background/summary/
fwi. The FWI is categorized as such: very low (0.0–5.2), low (5.2–11.2),
moderate (11.2–21.3), high (21.3–38.0), very high (38.0–50.0) and ex-
treme (50.0–100.0).

2.1. PFI fire danger

The PFI has been described in other studies (Justino et al., 2021, Justino
et al., 2011; Da Silva et al., 2021) and for brevity detail is not provided here.
Several equations are applied to parameterize temperature (FT), precipita-
tion and the vegetation cover response of these quantities as drivers for the
PFI. The FT takes into account temperature, such as shown by the equation
below:

FT ¼ 0:02� Tmþ 0:4½ Þ � 0:003jLatjþ1ð Þ� (1)

https://cds.climate.copernicus.eu/cdsapp!/dataset/
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where, Tm is the mean temperature and |Lat| stands for the grid latitude in
degrees. The FT is included as a fire danger factor because similar air tem-
peratures in the tropics and extra-tropics are associated with distinct vege-
tation responses, and thus fire danger.

A different factor has been included to replace the LogHai (Justino et al.,
2022): This is implemented, because LogHai requires air temperature and
dewpoint temperatures from surface to 700 hPa to estimate the effect of rel-
ative humidity and atmospheric instability on PFI. The relative humidity
(r) influence on PFI is measured by Eq. (2) below.

FU ¼ � 0:006� rð Þ þ 1:3 (2)

It increases when humidity is <50 % and diminishes for values >50 %
(Justino et al., 2011). FT and FU are combined to reproduce the impact of
changes in temperature and atmospheric humidity on the fire danger,
namely FTU = FU × FT. These changes do not lead to substantial differ-
ences of PFI values as compared to previous results (Da Silva et al., 2021).
To clarify the sequence of calculations a flowchart has been added to
Supplementary material (Fig. S1).

The PFI also takes into account the type, and natural cycle of vegeta-
tion defoliation, which is represented by considering the link between
the vegetation and the precipitation distribution as a sine function
(Justino et al., 2021). The vegetation data used is generated from annual
MODIS MOD12C1 (https://lpdaac.usgs.gov/products/mcd12c1v006) and
MCD12Q1 (https://lpdaac.usgs.gov/products/mcd12q1v006/) product
observations, available from the Land Processes DAAC.

2.2. Satellite-derived fire activity

The processed Moderate Resolution Imaging Spectroradiometer
(MODIS) Collection 6 Near Real-Time (NRT) active fire products
(Aqua+Terra) based on the standardMOD14DL/MYD14 fire and thermal
anomaly algorithms have been used as fire proxies (Giglio et al., 2016).
These data are available at https://earthdata.nasa.gov/earth-observation-
data/near-real-time/firms (last access:

February 2022). The MODIS hotspots (MCD14DL) are downloaded at
1 km resolution from 2001 to 2020. Statistical analyses on these data and
their association to climate conditions have been provided in previous pub-
lications (Justino et al., 2022; Da Silva et al., 2021). MODIS active fires are
detected during the satellite passage and not necessarily all fires are
captured because hotspots with lower intensity can be extinguished at
that particular time. Moreover, detection rates increased with fire size.

2.3. Burned area

Major effort has been spent to compute Earth burned areas used in this
study. This is derived from the MODIS/Terra+Aqua combined MCD64A1
Version 6 Burned Area data product. The MCD64A1 is a monthly, global
gridded 500-m product providing the estimated day of year (1 to 366),
when burning has been detected, from November 2000 to present.
The MCD64A1 database was retrieved on January 9, 2022, from
https://lpdaac.usgs.gov/products/mcd64a1v006/, maintained by the
NASA EOSDIS Land Processes Distributed Active Archive Center (LP
DAAC) at the USGS Earth Resources Observation and Science (EROS)
Center, Sioux Falls, South Dakota. A total of 67,536 images comprising
the period from 2000 to 11-01 to 2021-10-01 (252 months and 268 im-
ages/month) have been downloaded. The pixels from the monthly burn
day of the year product are classified just as unburned or burned areas
(0 or 1) for the corresponding month. Images are first re-projected to
the WGS 84 coordinate reference system (EPSG:4326) and aggregated
to a spatial resolution of 0.5° x 0.5°. The 268 images/tiles of each
month are then combined (mosaiced) resulting in a monthly global
dataset (longitude: 0° to 360°, latitude: 60°S to 70°N), containing the
percentage of area burned per pixel.

The total area burned per pixel was obtained by multiplying the per-
centage of burned area per pixel equivalent area.
3

2.4. Global climate indices

Empirical Orthogonal Function analyses (EOF) have been utilized
to compute global oceanic indices based on monthly averages of ERA5
Sea Surface Temperatures, spanning the 1980–2020. The EOF is applied
to compute the El-Niño-Southern Oscillation (ENSO, 20°S-20°N, 160°W-
80°W), Atlantic Meridional Mode (AMM, 20°S-32°N, 75°W-15°E) and the
Atlantic tripole (Atl-Tripole, 10°N-70°N, 80°W-0°), according to definitions
available at https://psl.noaa.gov/data/climateindices/list/.

The Dipole Mode Index (DMI) and Tropical Atlantic Variability (TAV)
are based on SST regional differences. The TAV and DMI are also calculated
based on ERA5 SST. The DMI indicates the east-west temperature gradient
across the Indian Ocean (Black et al., 2003), between the eastern (10°S–0°,
90°–110°E) and western (10°S–10°N, 50°–70°E) basins. The TAV displays
differences between SST anomalies in the tropical Atlantic between
5.5 N°-23.5°N, 15 W-57.5°W and Eq-20°S, 10°E-30°W.

3. Results and discussion

3.1. Fire weather danger distribution

The Potential Fire Index (PFI) and FWI are initially analysed based on
daily data and comparedwith distribution of precipitation and temperature
in the spatiotemporal domain. Moreover, their ability to reproduce regions
which experience high number of fires is also verified (Fig. 1a-d).

Limitations in FWI may be demonstrated by comparing its time mean
conditions from 1980 to 2020, with the PFI (Fig. 1a,b). The FWI shows re-
duced areas with higher fire vulnerability in regions that experience fre-
quent burning, such as South America, western North America and most
of Eurasia (Figs. 1a,b and 2 in SupplementaryMaterial S2). It has to bemen-
tioned that the satellite based-hotspots span 2001 to present. In PFI >85 %
(70 %) of satellite-based fires in the tropics (middle-latitudes, 30°N-45°N),
between 2001 and 2020, are found in moderate-high fire danger zones
(PFI > 0.5), whereas in FWI this correspondence is drastically weakened,
as shown in Figs. 1c,d and S3 b. Most fires are categorized in FWI under
low and moderate risk (FWI < 25). The FWI ranging between 21.3 and
38.0 is classified as high risk of fire, thus, most fires should be found
under these values.

Fig. 1e,h show 7-day averaged correlation throughout the 1980–2020,
between the PFI/FWI and the period of drought (DD) and parameterized
air temperature, as represented by the factor of temperature (FT). The DD
is defined as the temporal evolution of precipitation in distinct intervals
during the preceding 120 days (Da Silva et al., 2021). There are highly sig-
nificant values in PFI related to DD in the tropics, and related to tempera-
ture in the extratropics. This correlation pattern fits nicely with results
that demonstrate how vegetation responds to changes in weather variables
(Dowdy et al., 2010). It should be mentioned that there is high 7-day corre-
lation at lag 0 between DD and FT over western North America, northern
South America, equatorial Africa, and southern Australia, where both fac-
tors contribute in phase to increase the fire danger, with dry and warm con-
ditions. Turning to FWI correlations (Fig. 1f,h) much lower correlation
values are found in comparison to PFI. Despite being statistically signifi-
cant, those values are lower than 0.4 demonstrating that the FWI heavily re-
lies on relative humidity and wind speed (Jain et al., 2021), instead of
precipitation distribution. It should be noted that the DD and FT are
components of the PFI, so the correlation would be expected to be better
than with another index that uses temperature and precipitation informa-
tion differently.

3.2. Trends in fire danger and their link with weather variables

To verify the consistency of both indices, Fig. 2a,b show the 40-year an-
nual trends of FWI and PFI based on daily averaged values (positive values
indicate an increase in environmental fire vulnerability). The calculation
includes all values delivered by the FWI and PFI, and despite large similar-
ities over western North America and western Eurasia, very different

https://lpdaac.usgs.gov/products/mcd12c1v006
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms
https://lpdaac.usgs.gov/products/mcd64a1v006/
https://psl.noaa.gov/data/climateindices/list/
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patterns are noticed across Asia, where most negative trends delivered by
the PFI oppose positive values in FWI (Fig. 2a,b).

This further indicates the secondary role of precipitation in FWI
(Fig. 2c). Indeed, the impact of precipitation distribution is very limited
in the FWI leading to an overestimation of the temperature contribution
to fire danger (Fig. 2b,d).

Additional analyses are performed to verify trends in extreme fire dan-
ger values, as represented by the 90th percentile (90p, Fig. 2e,f). Positive
trends of the 90p show that severe fire weather conditions above this
threshold have becomemore frequent during the 1980–2020 (Fig. 2e,f). Se-
vere fire weather conditions are increasing globally, in particular across
sub-Saharan Africa, eastern Australia, South America and western North
America (Fig. 2e,f), and temperature is responsible for increasing fire dan-
ger over Alaska and western Russia/east Europe (Fig. 2d). It can be argued
that precipitation plays less of a role for the extreme conditions, because the
DD90p showsmuch larger blue regions than the PFI 90pmaps, and the FWI
and PFI 90p agree better than their means.

In Asia and Africa, however, the dominant effect of DD distribution in
reducing fire danger is not depicted by the FWI, that mostly shows positive
trends over those regions. By weakening the impact of precipitation, the
FWI may misrepresent future fire danger estimates based on climate simu-
lations as part of the Coupled Model Intercomparison Project (CMIP). The
number of days withmaximum values of PFI and FWI increases in many re-
gions, as shown by statistically significant positive trends for the 90p
(Fig. 2e,f). This indicates increased frequency in number of days with
higher environmental vulnerability for fire occurrence, over areas that are
currently affected by critical values in particular of PFI, such as western
North America, South America, Europe-eastern Asia, Siberia and parts of
Australia (Fig. 1a).

Attribution of causes for trends in the 90th percentile shows a latitudi-
nal dependence, in the sense that temperature increases notably contribute
to positive PFI and FWI between 40°N-70°N. The primary exception is cen-
tral North America, where DD leads to negative trends in fire danger, and
reduced frequency of occurrence of fire danger maxima (blue regions on
Fig. 2a-f). In east Asia, the temperature effect (FT) dictates positive trends
in the frequency of critical fire danger, despite increases in the number of
days with higher accumulated precipitation (Fig. 2c,d). It turns out that
the distribution amount of precipitation spanning the 120-day interval is
not sufficient to oppose the warming effect. The remarkable role of short-
term precipitation distribution to fire danger rating is depicted in Fig. 3.
The combination between daily precipitation distribution and vegetation
(Fig. 3a) is based on accumulated rainfall in distinct intervals during the
preceding 120 days (Fp), the precipitation factor. This results in the period
of droughts (DD) where DD = 0.45{1 + sin[(A(Fp − 90)]}.

A is the vegetation flammability constant (Da Silva et al., 2021). The
temporal evolution of DD is shown in Fig. 3b for northern California. Ab-
sence of precipitation increases DD as noticed by the sinusoidal growth
which takes place from time 160. On the other hand, DD reduces as a
sine function to approximately 0 when substantial amount of precipitation
occurs (blue line, Fig. 3b).

It has to be stressed that similar values of DD result in distinct fire dan-
ger depending upon the background vegetation. Fig. 3 shows the fire dan-
ger component resulting from constant DD values (10, 30, 50) applied
worldwide, but over distinct vegetation types. It is very clear that for
DD = 10 environmental conditions are not prone to fire development
(Fig. 3c), because vegetation is not dry enough to burn and the amount of
fuel does not to support wildlfires. However, as soon as precipitation re-
duces, in frequency and volume, such as for DD= 30 or 50, fire danger in-
creases according to the type of vegetation. Regions dominated by
grassland, savannas and cropland (Fig. 3a) display danger ratings >0.8,
and enlarged areas are noticed for DD = 50, leading to even higher fire
danger ratings (Fig. 3c-e). Tropical forests are more resilient due to their
Fig. 1.Daily averaged (a) PFI and (b) FWI for the 1980–2020. (c) and (d) show the ratio o
the 2001–2020 total accumulated fires. 7-day Pearson correlation for the 1980–2020 be
for the temperature factor (FT). Dotted regions are significant at 95\% level. Land regio
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capacity to collect water from subsurface soil layers, thus, they still experi-
ence lower fire danger for DD= 50. However, values of DD larger than 90
will induce high fire danger rating across these ecosystems.

3.3. Trends in fire danger and their link with oceanic climate modes

Trends in the fire regime are also associated with large-scale modes of
climate variability. Previous studies have indicated that during the 2015/
16 El Niño more fires have been detected worldwide (Burton et al.,
2020). In Australia, burned area (BA) is also primarily controlled by ex-
treme weather linked to fluctuations in the Dipole Mode Index (DMI) in
the Indian Ocean (Wang et al., 2022a). Furthermore, it has been demon-
strated that northernAfrica'sfire activity is highly influenced by tropical At-
lantic Sea Surface Temperature (SST) during the dry season (November to
March), and the tropical Indian Ocean during the wet season (April to
September) (Yu et al., 2020). It is worth noting that more studies are
needed on the influence of oceanic variability on the fire regime. Patterns
of SSTs related to the Atlantic tripole (Atl-Tripole), Atlantic Meridional
Mode (AMM), ENSO, DMI and the Tropical Atlantic Variability (TAV) influ-
ence fire frequency and destructiveness, because they induce precipitation
and temperatures anomalies, modifying environmental characteristics far
from their source regions.

In fact, these modes of climate variability influence the global climate
by inducing teleconnections via atmospheric bridges. As discussed by Liu
and Alexander (2007) and Alexander et al. (2002). The tropical impact on
extratropical climate is accomplishedmainly through the atmosphere. Dur-
ing ENSO events, the atmospheric response to SST anomalies in the equato-
rial Pacific influences the climate worldwide by leading to droughts inmost
of the tropics. Fluctuation of the TAV also induce meridional migration of
the inter-tropical convergence zone (ITCZ), as well as modifies the Asian
summer climate (Ratna et al., 2020), in particular tropical-extratropical
and interhemispheric interactions. On the other hand, the extratropics in-
teract with the tropics via the oceanic gyres.

Correlation analyses show that these modes are barely linked in time
with ENSO,with exception of DMI that at lag 0 delivers a−0.35 correlation
value, that is significant at 95 %. The Atlantic modes on the other hand are
correlated such as that the AMM and Atl-Tripole correlation coefficient is
0.8, that is significant at 95% and Atl-Tripole and TAV is−0.48, not signif-
icant at 95 %. The AMM and Atl-Tripole have similar global patterns but
may be associated with different fire occurrences. Limitation arised due
to the timeseries length that only span the years 1980–2020, which can im-
pact the magnitude and significance of trends. However, society has been
constantly affected by fire activity that emerges and is intensified by
weather anomalies associated with global climatic drivers (Shi and
Touge, 2022).

Fig. 4 shows the maximum lag-correlation and respective lag between
the oceanic indices and the PFI. The maximum lag correlation (i.e., cross
correlation) provides themaximum correlation coefficients between the in-
dices and PFI, at the corresponding lag time.Maximumnumber of lags is 12
(months). In the current analyses the algorithm utilized by Song et al.
(2019) based on the vector auto-regressive (VAR) model estimation has
been used.

During the positive phases of the TAV and ENSO increasedfire danger is
found inAfrica and northern SouthAmerica, because these indices are asso-
ciated with reduction of precipitation and consequently positive anomalies
of DD (Fig. S2). Both regions, which are covered by tropical forests, are
experiencing positive trends in fire danger with increased number of days
with extreme values (Fig. 2e,f). Corroborating the positive ENSO-driven
PFI anomalies, previous studies have demonstrated that fires have been
more frequent and severe under positive ENSO events (Mariani et al.,
2016; Harris and Lucas, 2019) (Fig. 4b). It is demonstrated that in the tro-
pics maximum correlation between the TAV/ENSO and PFI occurs within
f satellite-observedfires found under PFI and FWI classes larger than 0.5 and 25, and
tween (e) PFI and DD, and FWI and DD (f). (g) and (h) are the same as (e) and (f) but
ns with sparse or absent vegetation are shown in white, (a-b) and (e-h).



Fig. 2. (a) and (b) show annual Mann-Kendall trends based on daily values of PFI and FWI from 1980 to 2020. (c) and (d) show decadalMann-Kendall 90% percentile trends
based on daily values of DDand FT (C). Patterns are displayed as increased (>0) or decreased (<0) number of days per decade. (e) and (f) are the same as (c) and (d) but for PFI
and FWI. Dotted regions are significant at 95 % level. Land regions with sparse or absent vegetation are shown in white in (a-f).
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the lags 0–3 months but at the equatorial region lags up to 6 months can be
found (Fig. 4f,g). Briefly speaking, the effect of TAV and ENSO in the fire
danger (PFI) is larger in the tropics where ENSOdemonstrates larger impact
with respect to the TAV. Across southern South America and Australia they
have opposite effect, and the PFI response is related to the dominance of the
index according to the lag. The impact of TAV in Australia (negative corre-
lations) should be viewed with care, because more effort is needed to iden-
tify climate mechanisms governing the statistical correlation between TAV
and PFI.

Across the extratropics maximum correlations related to ENSO (TAV)
are larger for lags between 6 and 8 (0–3) months. Reduction in water
6

availability during winter and spring of the year preceding the fire season
has been found to be crucial for ignition during summer in southeast
Australia (Harris and Lucas, 2019). Based on Mann-Kendall calculations,
ENSO and TAV do not deliver statistically significant trends at 90 % level
(Fig. 4f, Table 1). Nevertheless, a sequence of persistent events, such as pos-
itive ENSO or TAV is related to droughts in many regions (Gushchina et al.,
2020), leading to substantial enhancement in fire danger. This is indepen-
dent of long term trends. Persistent weather conditions related to TAV
and ENSO have already been associated with increased number of fires
worldwide, and in particular in the tropics (Burton et al., 2020;
Fernandes et al., 2011).
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Trends delivered by the DMI are statistically significant at the 90% level
(Table 1). The DMI influences the PFI in most of Australia and parts of
South America, and southern Africa. In particular, the fire danger response
is also in concert with the ENSO signal (Fig. 4b,c), but changes in the
months of maximum correlation between ENSO and DMI differ in the
Southern Hemisphere. The DMI greatly influences the PFI by 2–3 months
ahead (Fig. 4h).

Turning to the Atlantic variability as indicated by the AMM and the Atl-
Tripole, it is demonstrated that the PFI over South America and Africa is
strongly affected by these indices (Fig. 4d,e). Indeed, the SST pattern of
AMM and Atl-Tripole is characterized by an overall warming across the At-
lantic Ocean, which induces higher precipitation in most of the Eurasian
Fig. 3. Dominant vegetation cover (a) and (b) temporal evolution of precipitation
(approximately on 40 N, 121 W). (c) to (e) show the PFI component based on DD= 10
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extratropics but drought conditions over northern South America and
Africa, and parts of the west coast of North America including Mexico
and Alaska (Fig. 4d,e, Fig. S2 d,e). Those indices have shown statistically
significant negative trends (Table 1), which may alleviate increased fire
danger due to slight reduction inNorth Atlantic SSTs, related to the Atlantic
Multidecadal Oscillation (AMO) (Frajka-Williams et al., 2017). The positive
correlation between the indices and increased PFI, does not necessarily is
associated with human-induced increased fire activity. Wang and Huang
(2022) found a decreased fire trend in central South America associated
with weakening of the positive Atlantic Multidecadal Oscillation, and sub-
sequently strengthened northeast trade winds and moisture transport from
the Amazon.
(blue line) and DD (red line) for the year 2010 in northern California gridbox
, 30 and 50, respectively.



Fig. 4.Maximum lag-correlation between the indices and PFI for (a) TAV, (b) ENSO, (c) DMI, (d) AMM, and (e) Atl-Tri for 1980–2020. The majority of values larger than |
0.35| are significant at 95 %. (f) to (j) show the month of maximum correlation based on the vector auto-regressive (VAR) model.
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Although, the maximum correlation delivered by these indices displays
very similar global pattern, they differ substantially in the Americam conti-
nent and across Eurasia (Fig. 4i,j). The AMM is more related to PFI on lon-
ger lag, whereas the Atl-Tri maximum correlation is found in lag between 1
and 3 months, with exception of some parts of Africa, Australia and Asia
(Fig. 4j). The Atl-Tri is related to North Atlantic SST anomalies that reaches
70°N, whereas the AMM is confined to 32°N. The large oceanic domain of
the Atl-Tri is able to induce atmospheric anomalies almost in phase with
changes in SST. Teleconnections related to the AMM, on the other hand,
take more time to affect surface climate far distant to the source, such as
across Eurasia and northern North America.
8

3.4. Observed fire frequency and oceanic climatic modes

Although several climatological and statistical characteristics of fire
danger indices have been evaluated, further analyzes are required to
show consistency with hotspot observations and BA. The absence of such
investigation makes the previous discussions entirely dependent on meteo-
rological gridded datasets, that without validation against observations,
render conclusions to be entirely dependent upon the appliedmethodology.
Thus, the following section addresses quantitatively, themonthly incidence
of satellite based-fires associated with changes of oceanic indices, and dis-
cusses potential causes for changes in the spatial distribution. All analyses



Table 1
Decadal Mann-Kendall trends and probability (P) of oceanic indices based on ERA5
SST 1980–2020.

Index ENSO DMI TAV AMM Atl-Tripole

C/decade −0.06 0.01 0.00 −0.44 −0.53
P 0.36 0.91 0.44 0.99 0.99

F. Justino et al. Science of the Total Environment 883 (2023) 163397
regarding the global oceanic indices are conducting for indices larger than |
0.5| standard deviation (Fig. 5). This allows to have a more direct response
of fires associated to DMI, TAV, AMMand ENSO. However, this reduces the
percentage of fire occurrences with respect to analyses that uses all months
throughout the 2001–2020 interval (See Fig. 6).
Fig. 5. Percentage of monthly fire occurrences with respect to total amount for indices l
(f) show the regression pattern between the indices and the monthly accumulated num
Kendall trends for the total number of accumulated fires and burned area (km2) from 2
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The majority of fires detected by MODIS are located across the tropics
and subtropics but several fires are also observed in North America causing
all sort of damage (Figs. 5 and 6). In addition to the local influence of sur-
face conditions such as vegetation and soil moisture, Fig. 5 demonstrates
that climate teleconnections related to the oceanic indices modify the fre-
quency of fires in distinct regions.

Despite being previously presented, the AMM and Atl-Tripole are not
shown below because due to their decadal variability, during the
2001–2020 period, they have beenmostly positive throughout this interval.
Therefore, >85 % of fires are predominantly found for AMM+ and Atl-
Tripole+.

The TAV+which is characterized by higher (lower) SST in the northern
(southern) tropical Atlantic, is associated with up to 40 % of detected fires
arger than |0.5| standard deviation. (a) TAV+, (b) ENSO+, (c) DMI+. (d), (e) and
ber of fires for TAV, ENSO and DMI, respectively. (g) and (h) display annual Mann-
001 to 2020. Note the distinct scaling in the plots.



Fig. 6. (a) Total accumulated satellite-detected fires (x103) for the 2001–2020. Percentage of fires with respect to total for (b) TAV+, (c) ENSO+, (d) DMI+, (e) TAV+,
(f) ENSO- and (g) DMI-. Numbers in the panel titles (b-h) indicate the frequency of occurrence of the event.
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from 30°S to 60°N (Fig. 6b) due to a decrease in rainfall (Fig. S2). Fires over
large parts of South America and Africa related to extreme TAV+, with
values above |0.5| standard deviation (STD), show that about 8–10 % of
fires are found during these intensified conditions (Fig. 5a).

The ENSO+, despite its global influence, shows lesser contribution to
total fires in the positive phase (El Niño-like) with respect to the TAV
(Fig. 5a,b). However, it is still related with fires in the tropics, contributing
significantly to fires in southeastern North America and Asia (Fig. 5c). Over
these regions, ENSO+ delivers increased precipitation which can provide
additional fuel in the coming months leading to fires. The reduction in
the environmentalflammability (lower PFI, Fig. 4b) is not sufficient to ham-
per fire activity. During 2001–2020, ENSO index larger than |0.5| STD has
been found in 23% of themonths and its influence should be highlighted in
particular across South America, and the Sahelian Africa.
10
These regions include the Amazonian arc of deforestation in the
transition between the rainforest and savannas, and the frontier between
the Sahara to the north and the Sudanian savanna to the south.

Both biogeographic regions have experienced high rate of deforestation
threatening the livelihood of the ecosystems. Thus, future pattern of ENSO
can induce climate conditions able to further accelerate the human-driven
and natural clearing of vegetation (Gushchina et al., 2020).

Turning to DMI-fire relationship, an interesting feature emerges over
Africa (Figs. 5d, 6d), where in the subtropics DMI+ is accompanied by
higher percentage of fires, but lower concentration in the equatorial belt
as compared to the ENSO+ pattern. This is related to the anti-correlated
pattern between both indices leading to distinct precipitation distributions
(Figs. 5b,c and 6c,d). The DMI+ due to drought conditions exerts important
role in inducing fires in Australia, in particular in the northwestern region
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adding to the ENSO+ contribution. Changes in fires in Eurasia and North
America related to DMI+ may be also attributed to the global effect of the
ENSO and TAV. It should be noted that the ENSO index calculation is
based on the tropical Pacific domain, instead of Niño 3.4, 1.2 or Niño 4,
thus, current results may differ from other studies, which are based on
SST anomalies averaged across much smaller regions.

During the negative phases according to |0.5| STD, which are found for
TAV in 17 %, for ENSO 24 % and for DMI in 15 % of the months, the fire
incidence reduces in the tropics (not shown), which is mostly related to
lower SST in the northern tropical Atlantic. Colder North Atlantic induces
the Intertropical Convergence Zone (ITCZ) to predominantly stay over its
south position, increasing monsoonal precipitation in East Africa and cen-
tral South America.

It is discussed below how fires evolve in phase with the oceanic indices
based on linear regression. Analyses between those indices and the time
evolution of monthly accumulated fires, which is shown by the slope at
each grid point for the 2001–2020, demonstrate that the TAV timeseries
is associated in South America and parts of equatorial Africa, with temporal
increase in satellite-detected fires, whereas negative regression values are
found in East Asia and Australia (Fig. 5d). The ENSO supports the TAV pat-
tern in the American Continent and Eurasia (Fig. 5d,e), but they disagree
over most of tropical Africa. ENSO primary impacts annual precipitation
and leads to drought conditions in large parts of both Africa and South
America regions. In Africa, reduced precipitation and high temperatures
lead to decline in vegetation cover (Sazib et al., 2020), hence less combus-
tible material is available for the fire season. Most fires in Africa are also re-
lated to human actions, and since agricultural activities are weakened due
to dry conditions, fire used for clearing bushes are similarly reduced. Turn-
ing to Australia, these two indices are related tomore frequent incidence of
fires in the northwestern region.

The DMI+ is linked to lower fire incidence in Australia, although PFI
anomalies indicate positive ratings related to this index (Figs. 5f, 4c). The
global analysis limits a close look in particular regions, such as southeastern
Australia, where fire have been frequent and related to DMI variability
(Wang and Cai, 2020). Fig. 5g,h display the total trend of hotspots and re-
lated BA. This primary reveals that trends related to ENSO do not appear
in Africa, for which the total trends in fires resemble the fire response to
TAV, as shown in Fig. 5d,g. Increases in the incidence of fires in the
2001–2020 period, occur mostly over Africa and southeast Asia, parts of
the American Continent and southeast Australia.

Negative trends, are highlighted in central Asia, Sahel, Indonesian Ar-
chipelago and South America. These features also depicted by the trends
in the BA (Fig. 5h) In the tropics, there is a good match between the fires
and BA trends, with increased number of fires resulting in an upward
trend of BA.

This is highlighted in eastern North America, southeastern Asia and
southern Australia. Most parts of Africa and South America have experi-
enced negative trends, which are not supported by increased fire danger
(PFI and FWI). In addition to weather conditions, the occurrence of fires
is tightly related to human behavior as well as to policies defined by local
authorities.

Earl et al. (2015) analysing anthropogenic influences on globalfire from
weekly cycles of aerosols demonstrated that these cycles are largely corre-
latedwithworkdays and notablywith days of rest, associatedwith religious
practices. Global environmental principles are also very important to re-
duce fire activities, and these actions seem to be mainly responsible for
the negative trends in South America and Africa, in particular over forested
regions.

4. Uncertainties and limitations

Analysis of fire pattern distribution and frequency is a difficult
task because involves both human action and environmental conditions.
The current study does not include the former effect because it depends
upon social levels of environmental conscientization, which is difficult to
parameterize.
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Influence of human has to be interpreted locally, as it is a matter of col-
lective conscience and engagement of the constituted authorities to define
sustainable public policies. Caveats also arise because analyses conducted
here are based on reanalyses, blended data and satellite measurements,
which may lead to fire danger estimates different than those computed
from field observations. Thus, resulting in weaker or stronger link between
the oceanic indices and the environmental fire characteristics and hotspots.
Lightning induced-fires is other factor that have not been currently consid-
ered. However, per se, analyses offire and lightning require the use ofmuch
higher resolution datasets in particular satellite detected hotspots. In this
sense, longer time series are not available to investigate the role of oceanic
indices and lightning induced-fires.

The understanding of fire patterns and their trends is directly linked to
the implementation of fire-weather conditions in fire risk models. The
Potential Fire Index (PFI) applied in the current study is able to accurately
represent the environmental risk of forest fires, matching in most regions
>80 % of satellite detected hotspots, thus, being a useful tool for
short-term fire prediction. Analyses conducted here are useful because
those climate indices have been forecasted properly and ahead. Thus, by in-
vestigating their global impact may help fire agencies and communities to
anticipate, and determine regions and municipalities which are more vul-
nerable in response to climatic impacts of oceanic teleconnections upon
fire danger. Results indicate that improvements in prediction of environ-
mental wildfire frequency and severity might be achieved by advanced
assessment of the oceanic indices characteristics.

5. Conclusions

Results indicate that seasonal fire forecasts must include vegetation
characteristics and climatic conditions induced by teleconnections driven
by main modes of oceanic variability, that occur at great distances from
the zones of interest. In particular, fire frequency in Africa, North
America and South America has been found to be tightly dependent on
tropical Atlantic sea surface temperatures.

Fire danger methods, MODIS based-fires and burned area demonstrate
at most regions that fire danger indices are able to capture the temporal
evolution of satellite measurements, in particular for PFI in Africa and
Australia. The understanding of fire frequency and distribution, as well as
fire weather trends, requires evaluation that extends beyond the region of
occurrence, as demonstrated here. There is an evident impact of oceanic
modes of climate variability in inducing an enhancement of environmental
conditions conducive to fires, with particular relevance for seasonal fore-
casts of the spatiotemporal fire characteristics.

Additional work is necessary to connect those anomalies to local
levels, under detailed surface characterization of land use and fuel avail-
ability. Furthermore, the relationship between observe fires, burned
areas and regions under critical fire risk depends on other factors,
from lightning strokes to local and Federal policies related to land fire
management. Agricultural activities have been modernized in many re-
gions suppressing the use of fire. This leads to negative fire and BA
trends but environmental conditions that are still conducive to wildfire.
New settlements and expansion of agriculture are occurring in other re-
gions indicating that reduced vulnerability is not sufficient to hamper
fire development.

This serves to demonstrate the complexity of attributing causes to the
occurrence of wildfires. Large-scale analyses as discussed above, are impor-
tant because they usefully serve to indicate the environmental fire vulnera-
bility on a global perspective, that should be complemented with the local
knowledge to control and avoid fires.
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