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Abstract

Geomorphological records of past ice sheet change offer the opportunity to examine

their centennial-scale response to changing boundary conditions, which are not ade-

quately captured in the satellite record. Here, we present the first reconstruction of

ice surface lowering at Byrd Glacier, the largest outlet glacier of the Transantarctic

Mountains. Using surface exposure ages from glacial erratic cobbles collected in two

vertical transects along the Lonewolf Nunataks, we find the initial emergence of this

set of nunataks occurred at �15 ka, with a rapid pulse of thinning at �8 ka. We com-

pare our glacier thinning profiles with modelled ice sheet thickness and grounding

line histories from two model ensembles to identify key processes responsible for ice

sheet change. All model runs from the two ensembles predict grounding line retreat

and inland thinning to occur in one rapid step from Last Glacial Maximum to present,

in line with marine geology records, our exposure age data and derived glacier thin-

ning rates. Experiments best matching the glacial thickness constraints, reconstructed

from the surface exposure data, have faster basal sliding (i.e., promote greater sliding

rates resulting in thinner ice). However, experiments best matching the timing and

rapid rate of ice thinning derived from the same surface exposure data have higher

basal friction. This apparent change in the modelled basal sliding regime, from when

the ice surface is at maximum thickness, to the rapid thinning at �8 ka, occurs as the

grounding line retreats towards the Byrd Glacier and Ross Ice Shelf forms during the

Holocene. This past context has implications for the stability of the modern ground-

ing line of Byrd Glacier, which is characterised by high basal melt rates at the

terminus—a process that has the potential to propagate glacier thinning far inland,

impacting the overall (in)stability of the Byrd Glacier and Ross Ice Shelf.

K E YWORD S
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1 | INTRODUCTION

By 2100, large sectors of the Antarctic Ice Sheet (AIS) may be affected

by the abrupt onset of Marine Ice Sheet Instability (DeConto &

Pollard, 2016; Fox-Kemper et al., 2021; Meredith et al., 2019). This

process in which grounding lines retreat into deeper inland basins,

and leading to dynamic thinning, has the potential to contribute up to

an additional metre of sea level rise within the next century (Fox-

Kemper et al., 2021; Schoof, 2007). Currently, relatively warm ocean

water is thermally eroding ice shelves, driving widespread grounding

line retreat and inland dynamic thinning (Fürst et al., 2016; Joughin

et al., 2014; Pritchard et al., 2009, 2012; Smith et al., 2020). While the

ongoing thinning of the AIS is dominated by mass loss along the

Antarctic Peninsula and Amundsen Sea Sector (IMBIE, 2018), other
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sectors, including the Ross Embayment, show evidence of localised

extreme basal melt (Das et al., 2020; Stevens et al., 2020; Stewart

et al., 2019), which could trigger inland thinning hundreds of

kilometres away (Reese et al., 2018). Understanding the underlying

processes responsible for future mass loss remains an important

objective that is often addressed by comparing evidence for Holocene

ice mass loss against ice sheet models.

In the Ross Embayment, the exact timing and pattern of ground-

ing line retreat is debated due to a lack of reliable geological age con-

straints (Bart et al., 2018; Conway et al., 1999; Lee et al., 2017;

R. McKay et al., 2016; Spector et al., 2017) and disagreement amongst

models (Kingslake et al., 2018; Lowry et al., 2019). One scenario sug-

gests that past ice shelf collapse may have caused the grounding line

to retreat much farther inland than today and then readvanced to its

current location (Kingslake et al., 2018; Venturelli et al., 2020). How-

ever, relative to the Weddell and Amundsen Sea Sectors, geological

evidence for grounding line readvancement in the Ross Sea Sector is

weak and inconsistent in the central Ross Sea embayment (Johnson

et al., 2022). An alternate scenario is that grounding line retreat and

stabilisation may have occurred in one step primarily in response to

sea level rise, enhanced ocean heat and topographic controls from

Last Glacial Maximum (LGM), �20 000 years ago to present (Lowry

et al., 2019). The vastly different retreat scenarios indicate that cur-

rent ice sheet models do not fully capture all underlying ice mass loss

processes. Importantly, past modelled retreat scenarios are driven by

the same models that forecast Antarctica’s future ice mass loss and

contribution to sea level rise, therefore, these disparities have implica-

tions for the forecasts themselves (Chambers et al., 2022; DeConto &

Pollard, 2016; Golledge et al., 2015; Seroussi et al., 2020). Current

observations of enhanced melt beneath modern Antarctic ice shelves,

possibly initiating Marine Ice Sheet Instability, emphasise the urgent

need to understand the pattern and drivers for past AIS mass loss so

that ice sheet models, and thereby future projections, are improved.

Cosmogenic nuclide inventories extracted from glacial debris

have revolutionised our ability to reconstruct the past AIS, providing

critical thickness constraints on past ice margins (Balco, 2011; Small

et al., 2019). Entrained glacial debris is ultimately deposited by a thin-

ning glacier, at which point cosmogenic nuclide production begins and

offers a way to determine the samples surface exposure age, or time

since deposition. Exposure ages from glacial debris, collected along a

vertical transect, typically show a lower exposure age with elevation

and this trend is interpreted to reflect past ice thickness changes

(Small et al., 2019; Stone et al., 2003). By combining terrestrial and

marine records of past ice fluctuations, a clear early-mid Holocene ice

thinning and grounding line retreat signal has emerged (Bentley

et al., 2014). Despite two decades of reconstructions of the past AIS

using cosmogenic nuclides, vast regions, particularly those of the con-

tinental interior, remain unconstrained.

The Byrd Glacier basin (Figure 1) is one of the largest glacier catch-

ments on Earth (1.07 � 106 km2) and responsible for�18% of the total

ice flux to the Ross Ice Shelf (Stearns et al., 2008). Consequently, it rep-

resents a significant element of the past AIS with an unconstrained

onshore thinning history. Submarine mapping and sediment prove-

nance studies show that, during the LGM, the Byrd Glacier advanced

along with other outlet glaciers into the outer Ross Sea (Bentley

et al., 2014; Licht & Palmer, 2013). At the LGM, the Byrd Glacier filled

the Central Basin, JOIDES and Pennell troughs and Glomar Challenger

Basin (Halberstadt et al., 2016; Licht & Palmer, 2013) (Figure 1a).

Subsequent grounding line retreat in the outer Pennell Trough was ini-

tiated sometime just prior to 15 ka (Prothro et al., 2020) with two

F I GU R E 1 (a) Overview map of topography (Howat et al., 2019) and bathymetry (Morlighem et al., 2020) of the Ross Embayment and
Transantarctic Mountains (TAM) including feature names mentioned in the text: Glomar Challenger Basin (GCB), JOIDES Trough (JT), Pennell
Trough (PT), Central Basin (CB). Shaded red box indicates extent of panel b. Magenta lines show paleo grounding line extent (J. B. Anderson
et al., 2014; Bentley et al., 2014) and black line shows modern grounding line location. Thin white lines and yellow line indicate flowline paths
associated with Figure 9. Note location of cores KC17, JPC01 (Prothro et al., 2020) and CH-2 (R. McKay et al., 2016). (b) Satellite image
(Bindschadler et al., 2008) of Byrd Glacier as it flows through the TAM. Red box indicates extent of panel c. Note the location of field sites of this
study and the location of the modern day grounding line (GL). (c) Satellite image (Bindschadler et al., 2008) and topographic contours (Howat
et al., 2019) of the Lonewolf Nunataks. Black dashed line indicates location of Lonewolf Escarpment. Samples collected in the field are indicated

with filled circles.

2 STUTZ ET AL.

 10969837, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5701 by O

hio State U
niversity O

hio Sta, W
iley O

nline L
ibrary on [27/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



pulses of thinning (14–10 and 10–7 ka) (Anderson et al., 2017) and

open marine conditions east of Ross Island established by 8.6 ka

(McKay et al., 2016). During deglaciation, ice sheet modelling suggests

that debuttressing of thick grounded ice caused the Byrd Glacier to

speed up and ice shelf area is likely to have rapidly expanded over the

deeper topography south of Ross Island, thus playing a significant role

in early formation of the Ross Ice Shelf (Lowry et al., 2019) (Figure 2).

While earlier studies provide some constraints on the outer Ross Sea

history of past marine ice sheets sourced from Byrd Glacier catchment,

the inland history along the Byrd Glacier represents a significant gap in

constraining this sector of the AIS.

In this study, we assess the response of upper Byrd Glacier to

grounding line retreat in the Ross Sea, the pacing of surface lowering

compared with other Transantarctic Mountain (TAM) outlet glaciers

and how its thinning history compares with those predicted by ice

sheet models. We achieve this by collecting glacial erratics in vertical

transects from the modern ice surface to the highest local peak and

extract inventories of cosmogenic nuclides to calculate surface expo-

sure ages. Next, we use the calculated 10Be surface exposure age of a

glacial erratic to constrain the ice surface elevation over time (Small

et al., 2019; Stone et al., 2003). We compile all exposure age-elevation

pairs to track the thinning history for each sampling site. These paleo-

thinning rates are then compared against rates simulated in two

separate ensembles of transient deglacial ice sheet model experiments

for the Ross Sea region. Finally, we examine the broader pattern of

grounding line retreat in these model ensembles to provide a physical

basis to help explain the emerging regional pattern of Transantarctic

outlet glacier response to deglaciation.

2 | METHODOLOGY AND METHODS

2.1 | Cosmogenic nuclide sample collection and
processing

Field work was conducted during the 2019–2020 austral summer sea-

son and included two visits to the Lonewolf Nunataks, an archipelago

of nunataks approximately 150 km inland from the modern grounding

line of Byrd Glacier (Figure 1b). There are six individual nunataks in

the group with a prominent topographic escarpment extending along

the northern margin of the nunatak group (Figure 1c). Above the

escarpment, slow ice surface velocities and ablation features such as

blue ice and wind scoops dominate while below the escarpment, fast

ice surface velocities, flow stripes and crevassing dominate

(Bindschadler et al., 2008; Rignot et al., 2011). Using a Trimble GeoXH

GPS, we collected 28 quartz rich glacial erratic cobbles perched on

F I GU R E 2 Modelled evolution of grounded ice in the Ross Sea during ice sheet thinning at Lonewolf Nunataks (LWN) as simulated by the
model ensemble A (panels a and b; Lowry et al., 2019, 2020) and model ensemble B (panels c and d; Hillebrand et al., 2021). Panels a and c
represent grounded ice distribution at the onset of modelled thinning at Lonewolf Nunataks (LWN), while panels b and d show the distribution of
grounded ice immediately after modelled thinning ceases at LWN. Grounded ice is normalised to represent the fraction of model ensemble
members (i.e., 1 = all members show grounded ice, 0 = no members show grounded ice). Other key locations indicated: RI = Ross Island,

PB = Pennell Bank.
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bedrock in two vertical transects from the modern ice surface to the

highest local peaks, spread across three sample sites. Cobbles com-

monly had bulleted shape with facets and rarely glacial striae. The first

vertical transect spans elevations between 1392 to 1634 metres

above sea level (m.a.s.l) and consists of samples from the Lonewolf

1 (LW) Nunatak. LW1 Nunatak is situated below the prominent topo-

graphic escarpment in a zone of enhanced ice flow velocities (Rignot

et al., 2011). The second vertical transect is located further upstream,

spans elevations of 1671 to 1420 m.a.s.l. and consists of samples from

three nunataks (Tiger, GPS and Lonewolf 2 [LW2]) that are all located

above the escarpment (Figures 3 and 4). We incorporate and exposure

date previously collected glacial erratic cobbles from LW2 moraine

deposit (Palmer et al., 2012) and Mt. Tadpole (Figures 3c and S3)

within the Byrd Fiord.

Samples were crushed, sieved and magnetically separated on the

Frantz isodynamic electromagnet. Quartz separates were chemically

leached in 10% HCl for 24–48 h followed by two rounds of 1% HF

for 4�5 days each round. Quartz purity was tracked visually via

microscope throughout sample processing. Approximately 250 μg of
9Be spike was added and sample digestion, ion exchange chemistry

and sample conversion followed established methods (Norton

et al., 2008). Following calcination by open flame, the BeO was mixed

with Nb powder and pressed into copper cathodes. Measurements of
10Be/9Be was completed by Accelerator Mass Spectrometry on the

6 MV Sirius Accelerator at the Australia Nuclear Science Technology

Organisation (Wilcken et al., 2019). Measured 10Be concentrations

were normalised to the KN-5-3 standard with a reference value for
10Be/9Be ratio of 6.320e�12 (t1/2 = 1.36 Myr) (Nishiizumi

et al., 2007). The measured 10Be concentrations were blank corrected

following standard procedures as in (Balco et al., 2008; Wilcken

et al., 2022). Surface exposure ages were calculated, accounting for

local topographic shielding and assuming zero erosion, with the online

cosmogenic nuclide calculator (Version 3) (Balco et al., 2008) and the

LSDn scaling scheme (Lifton et al., 2014) (Tables 1–4).

Using the ‘estimate linear thinning rate’ tool (Jones et al., 2019),

we combine exposure ages from each transect to reconstruct paleo-

thinning rates (Jones et al., 2019; Small et al., 2019). This approach

performs least-squares regression analysis for a suite of exposure ages

through a Monte Carlo simulation and assumes exposure ages marks

the ice surface at each position and thinning was continuous over the

transect (Jones et al., 2019). To determine elevation above modern

ice surface (i.e., for thickness change and thinning rate calculations)

along a transect, we subtract the nearest elevation of the glacier,

within the zone of enhanced ice velocities, from the sample elevation.

2.2 | Methods (ice sheet modelling setup)

Using the output from two 3-dimensional thermomechanical ice sheet

models, namely, the Parallel Ice Sheet Model (Bueler & Brown, 2009)

F I GU R E 3 Hillshade map, elevation contours in metres above sea level (Howat et al., 2019) of (a) LW1 Nunatak, (b) Tiger-GPS Nunataks and
(c) Mt. Tadpole. All samples are reported with sample name, exposure age and total uncertainty including analytical error and errors arising from
production rate calibration and scaling to sites (Balco et al., 2008). Samples labelled with grey text indicate samples interpreted to contain
inherited cosmogenic nuclide inventory due to previous exposure, (d) satellite image (Bindschadler et al., 2008) showing location of a, b, and

c. Dashed grey line in B is location of Lonewolf Escarpment.
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and Pennsylvania State University 3-D Ice Sheet Model (Pollard &

Deconto, 2012), we extract the modelled ice sheet thinning and

grounding line retreat histories from two ensembles of the last degla-

ciation for the Lonewolf Nunataks (Hillebrand et al., 2021; Lowry

et al., 2019, 2020). These ensembles are chosen because they cover

the necessary geographic domain to investigate the relationship

between regional grounding line dynamics and ice thinning at Byrd

Glacier. Both model ensembles use a hybrid combination of Shallow

Ice Approximation (SIA) and/Shallow Shelf Approximation (SSA) equa-

tions for ice flow. They also consider uncertainty in other model

parameters that impact the timing of deglacial ice sheet retreat. We

refer to these respective model ensembles as model ensemble A and

model ensemble B.

Model ensemble A (Lowry et al., 2019, 2020) is run at 10-km hori-

zontal resolution for the Ross Sea catchment only. This ensemble

includes simulations with different climate forcings to explore the

effect of timing and magnitude of deglacial warming. These forcings

are based on WAIS divide (Cuffey et al., 2016) and EPICA Dome C

(Parrenin et al., 2007) ice core records, benthic d18O records

(Elderfield et al., 2012; Lisiecki & Raymo, 2005) and climate model

outputs (Liu et al., 2009; Menviel et al., 2011). The ocean forcing is

applied uniformly to the ice shelf as a basal melt rate anomaly scaled

from LGM to present (Lowry et al., 2019).

The ensemble also includes simulations with different model

parameters values to explore the uncertainties of ice rheology, basal

friction and Glacial Isostatic Adjustment (GIA) (Lowry et al., 2020):

• ESIA: enhancement factor of the stress balance in SIA; ice deforms

more easily in shear with increasing values

• ESSA: enhancement factor of the stress balance in SSA; lower

values result in slower/thicker ice streams and ice shelves

• q: exponent used in the pseudo-plastic sliding law; Ranges from

0 (plastic sliding) to 1 (linear sliding)

• Mantle viscosity: The ice sheet model includes a solid Earth model

(Lingle & Clark, 1985). Mantle viscosity influences the rate of GIA

• Minimum till friction angle on the continental shelf (i.e., where cur-

rent ice shelves are)—“marine” sediments are weaker than “conti-
nental” bedrock. This term impacts the yield stress.

Model ensemble B (Hillebrand et al., 2021) is run at 20- and

10-km resolution for the full continent. Ice shelf melt rates are calcu-

lated from ocean temperatures (Liu et al., 2009), with atmospheric

forcing scaled from benthic d18O records. The ensemble includes

runs with varied values for four model parameters and two different

sea level curves (Lisiecki & Raymo, 2005; Lisiecki & Stern, 2016).

• Basal sliding coefficient of the seafloor (different than q above, but

also impacts ice sheet sliding)

• Isostatic rebound rate (different than MV above, but also influ-

ences GIA)

• Melt rate sensitivity factor (to ocean temperature)

• Calving rate factor

3 | RESULTS

3.1 | Transect 1: LW1 Nunatak

Results from LW1 Nunatak provide exposure ages tracking the upper

ice surface from �8.4 to 5.5 ka and records a total thickness change

of �270 m (Figures 3a and 4). The uppermost samples, collected from

a broad plateau-like area, show a range of exposure ages from 8.4 to

F I GU R E 4 Elevation (metres above sea level)
versus calculated exposure ages and total
uncertainty (including analytical error and errors
arising from production rate calibration and scaling
to sites) for all LGM to present samples in this
study. Inset shows all exposure age data for this
study.
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T AB L E 1 AMS data and blank correction for 10Be measurements in this study. First eight rows are procedural blanks used to calculate 10Be
concentrations in associated samples. Headers indicate sample name, quartz mass, carrier added, 10Be/9Be ratio measured, 10Be concentrations
and associated uncertainties.

Process
blank #

Qtz mass
(g)

Carrier
added (g)

9Be blank
(g)

9Be

uncertainty
(g)

10/9

blank
ratio

10/9 blank ratio
uncertainty

10Be blank
(at)

10Be blank
uncertainty (at)

%
uncertainty

OT-B1 n.a. 0.308 3.09E�04 3.46E�06 2.2E�15 3.1E�16 46 480 6449 13.8

OT-B2 n.a. 0.310 3.11E�04 3.48E�06 1.0E�15 2.0E�16 20 982 4135 19.7

GPS-B n.a. 0.358 3.59E�04 4.01E�06 2.7E�15 3.1E�16 64 522 7557 11.7

EHW-B n.a. 0.359 3.61E�04 4.03E�06 5.8E�15 4.3E�16 139 053 10 544 7.5

EHW-B2 n.a. 0.359 3.60E�04 4.02E�06 3.4E�15 7.7E�16 81 363 18 500 22.7

OT-B2_2 n.a. 0.358 3.59E�04 4.01E�06 1.9E�15 2.2E�16 46 634 5280 11.3

TigerB n.a. 0.311 3.12E�04 3.49E�06 4.8E�15 4.4E�16 100 674 9328 9.2

Sample #
Qtz
mass (g)

Carrier
added (g) 9Be (g)

9Be
uncertainty
(g)

10/9
ratio

10/9 ratio
uncertainty

10Be conc.
(at/g)

10Be conc.
uncertainty

%
uncertainty

Batch OT-B1

OT-01 25.573 0.307 3.08E�04 3.44E�06 2.1E�13 4.8E�15 171 225 4302 2.2

OT-05A 25.881 0.307 3.08E�04 3.44E�06 2.1E�13 4.6E�15 165 276 4112 2.2

OT-07 25.859 0.308 3.09E�04 3.45E�06 2.1E�13 4.4E�15 163 295 3986 2.1

OT-14A 24.668 0.307 3.09E�04 3.45E�06 1.6E�13 4.0E�15 134 897 3693 2.5

OT-17 25.110 0.307 3.09E�04 3.45E�06 1.4E�13 3.5E�15 110 332 3146 2.6

Batch OT-B2

OT-10 14.741 0.377 3.79E�04 4.23E�06 1.1E�13 2.7E�15 183 022 5043 2.5

OT-15 13.711 0.307 3.08E�04 3.44E�06 8.7E�14 2.2E�15 128 908 3580 2.5

Batch GPS-B

OT-18 18.267 0.356 3.57E�04 3.99E�06 5.6E�13 1.3E�14 731 790 18 893 2.3

T-01 9.506 0.356 3.58E�04 3.99E�06 1.5E�13 3.5E�15 373 348 9804 2.3

T-02 12.972 0.357 3.58E�04 4.00E�06 7.7E�14 1.9E�15 136 328 3850 2.5

GPS-01A 22.550 0.357 3.58E�04 4.00E�06 8.2E�14 2.0E�15 84 493 2354 2.4

GPS-03C 17.520 0.358 3.59E�04 4.01E�06 1.2E�13 2.7E�15 161 954 4118 2.2

Batch_EHWB

LW2-BP 18.992 0.357 3.59E�04 4.01E�06 4.3E�13 7.3E�15 538 704 11 070 1.7

LW2-Ro 18.077 0.357 3.59E�04 4.01E�06 4.5E�14 1.2E�15 51 396 1831 2.7

Batch_EHWB2

R3-5 12.164 0.359 3.61E�04 4.03E�06 8.8E�14 2.2E�15 168 377 5101 2.5

R3-6 13.699 0.359 3.60E�04 4.03E�06 3.5E�14 1.1E�15 55 920 2470 3.2

LW2-15 13.738 0.359 3.61E�04 4.03E�06 2.8E�13 4.8E�15 486 624 10 074 1.7

Batch OTB2_2

OT-02 8.220 0.358 3.60E�04 4.02E�06 6.7E�14 1.9E�15 189 873 5899 2.8

OT-03 13.540 0.358 3.59E�04 4.01E�06 1.2E�13 2.7E�15 200 630 5382 2.4

OT-04A 14.413 0.358 3.60E�04 4.02E�06 1.2E�13 2.6E�15 189 591 4824 2.2

OT-05c 13.787 0.358 3.59E�04 4.01E�06 1.0E�13 2.3E�15 176 631 4499 2.2

OT-08 13.583 0.359 3.60E�04 4.03E�06 8.8E�13 2.1E�14 1 559 170 41 051 2.4

OT-09 13.476 0.358 3.59E�04 4.01E�06 1.0E�13 2.4E�15 174 763 4700 2.4

OT-12 6.199 0.359 3.60E�04 4.02E�06 3.5E�13 8.4E�15 1 365 404 36 106 2.4

OT-13 7.621 0.358 3.60E�04 4.02E�06 3.9E�13 1.1E�14 1 224 459 35 933 2.7

GPS02C 9.170 0.359 3.61E�04 4.03E�06 2.7E�13 6.5E�15 711 721 18 850 2.4

Batch TigerB

T01C 2.312 0.311 3.12E�04 3.49E�06 4.5E�14 1.5E�15 359 247 14 755 3.3

T01D 1.989 0.311 3.12E�04 3.48E�06 4.2E�14 1.4E�15 384 465 15 821 3.3

6 STUTZ ET AL.
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T AB L E 2 Sample metadata (location, thickness, density, shielding, erosion) and 10Be concentration, formatted for the online cosmogenic
nuclide calculator (V3).

Sample Long Lat Elev Pres Thickness Density Shielding Erosion Year

OT01 �81.285307 153.225085 1634.714 Ant 1.91 2.3 0.9923 0 2019 ;

OT02 �81.285372 153.225027 1632.385 Ant 3.50 2.7 0.9800 0 2019 ;

OT03 �81.285362 153.225665 1634.338 Ant 3.50 2.3 0.9800 0 2019 ;

OT04A �81.28521 153.221907 1629.108 Ant 3.50 2.7 0.9800 0 2019 ;

OT05A �81.2841 153.223108 1611.366 Ant 2.44 2.3 0.9923 0 2019 ;

OT05C �81.2841 153.223108 1611.366 Ant 3.50 2.3 0.9800 0 2019 ;

OT07 �81.283113 153.221711 1602.697 Ant 1.98 2.3 0.9923 0 2019 ;

OT08 �81.282989 153.223401 1595.895 Ant 3.50 2.3 0.9800 0 2019 ;

OT09 �81.28271 153.224258 1579.55 Ant 3.50 2.3 0.9800 0 2019 ;

OT10 �81.282584 153.225129 1569.281 Ant 4.35 2.7 0.9923 0 2019 ;

OT12 �81.282293 153.227478 1542.506 Ant 3.50 2.3 0.9800 0 2019 ;

OT13 �81.28215 153.22865 1527.657 Ant 3.50 2.7 0.9800 0 2019 ;

OT14A �81.281456 153.233126 1484.729 Ant 3.78 2.3 0.9923 0 2019 ;

OT15 �81.281141 153.235754 1460.355 Ant 3.63 2.7 0.9923 0 2019 ;

OT17 �81.280698 153.242471 1418 Ant 2.22 2.3 0.9923 0 2019 ;

OT18 81.2801504 153.247993 1392 Ant 2.15 2.7 0.9923 0 2019 ;

GPS01A �81.346045 152.729507 1594.664 Ant 2.75 2.3 0.9900 0 2019 ;

GPS02C �81.346038 152.730276 1588.701 Ant 3.50 2.3 0.9800 0 2019 ;

GPS03C �81.345982 152.731101 1585.117 Ant 2.50 2.3 0.9900 0 2019 ;

T01A �81.357061 152.760153 1671.72 Ant 1.50 2.3 0.9900 0 2019 ;

T01C �81.357061 152.760153 1671.72 Ant 3.50 2.3 0.9800 0 2019 ;

T01D �81.357061 152.760153 1671.72 Ant 3.50 2.7 0.9800 0 2019 ;

T02 �81.355038 152.75666 1663.72 Ant 2.75 2.7 0.9900 0 2019 ;

LW2BP �81.341 152.679 1420 Ant 5.05 2.7 0.9800 0 2005 ;

LW2Ro �81.341 152.679 1420 Ant 3.52 2.7 0.9800 0 2005 ;

LW215 �81.341 152.679 1420 Ant 4.86 2.7 0.9800 0 2005 ;

R3-5 �80.501827 158.72932 306 Ant 5.70 2.7 0.9800 0 2010 ;

R3-6 �80.501827 158.72932 306 Ant 5.40 2.7 0.9800 0 2010 ;

OT01 Be-10 Quartz 1.712E+05 4.302E+03 07KNSTD ;

OT02 Be-10 Quartz 1.899E+05 5.899E+03 07KNSTD ;

OT03 Be-10 Quartz 2.006E+05 5.382E+03 07KNSTD ;

OT04A Be-10 Quartz 1.896E+05 4.824E+03 07KNSTD ;

OT05A Be-10 Quartz 1.653E+05 4.112E+03 07KNSTD ;

OT05c Be-10 Quartz 1.766E+05 4.499E+03 07KNSTD ;

OT07 Be-10 Quartz 1.633E+05 3.986E+03 07KNSTD ;

OT08 Be-10 Quartz 1.559E+06 4.105E+04 07KNSTD ;

OT09 Be-10 Quartz 1.748E+05 4.700E+03 07KNSTD ;

OT10 Be-10 Quartz 1.830E+05 5.043E+03 07KNSTD ;

OT12 Be-10 Quartz 1.365E+06 3.611E+04 07KNSTD ;

OT13 Be-10 Quartz 1.224E+06 3.593E+04 07KNSTD ;

OT14A Be-10 Quartz 1.349E+05 3.693E+03 07KNSTD ;

OT15 Be-10 Quartz 1.289E+05 3.580E+03 07KNSTD ;

OT17 Be-10 Quartz 1.103E+05 3.146E+03 07KNSTD ;

OT18 Be-10 Quartz 7.318E+05 1.889E+04 07KNSTD ;

GPS01A Be-10 Quartz 8.449E+04 2.354E+03 07KNSTD ;

GPS02C Be-10 Quartz 7.117E+05 1.885E+04 07KNSTD ;

GPS03C Be-10 Quartz 1.620E+05 4.118E+03 07KNSTD ;

T01A Be-10 Quartz 3.733E+05 9.804E+03 07KNSTD ;

T01C Be-10 Quartz 3.592E+05 1.475E+04 07KNSTD ;

(Continues)
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7 ka, with a weighted mean age of 7.9 ± 0.5 ka (Figures 5a and

Figure S1). Samples collected along a ridge leading to the modern ice

surface show Holocene exposure ages from �8 to 5.5 ka. Samples

OT-08, -12, -14 and -18 show exposure ages older than the LGM and

are interpreted to represent inheritance of cosmogenic nuclides from

prior exposure. Samples OT-9 and -10, collected on a sharp change in

slope, show older than expected but still Holocene exposure ages,

potentially related to local factors such as down slope displacement or

earlier exposure during deglaciation.

3.2 | Transect 2: Tiger-GPS-LW2 Nunataks

Surface exposure ages from three sites along the composite transect

record �15 kyr of ice thinning (Figures 3 and 4). The highest elevation

samples (Tiger1A–C) found at 1671 m.a.s.l record thickness changes

of �190 m, have exposure ages between 14.8 and 15.9 ka (n = 3;

weighted mean: 15.2 ± 0.5 ka) and are interpreted here to constrain

the initial emergence of this nunatak (Figure 5b). Subsequent thinning

is constrained with mid-Holocene ages from lower elevations. The

T AB L E 2 (Continued)

Sample Long Lat Elev Pres Thickness Density Shielding Erosion Year

T01D Be-10 Quartz 3.845E+05 1.582E+04 07KNSTD ;

T02 Be-10 Quartz 1.363E+05 3.850E+03 07KNSTD ;

LW2BP Be-10 Quartz 5.387E+05 1.107E+04 07KNSTD ;

LW2Ro Be-10 Quartz 5.140E+04 1.831E+03 07KNSTD ;

LW215 Be-10 Quartz 4.866E+05 1.007E+04 07KNSTD ;

R3-5 Be-10 Quartz 1.684E+05 5.101E+03 07KNSTD ;

R3-6 Be-10 Quartz 5.592E+04 2.470E+03 07KNSTD ;

T AB L E 3 Sample surface exposure age for three scaling schemes as part of the online cosmogenic nuclide calculator.

Sample
name Nuclide

St Lm LSDn

Age
(year)

Interr
(year)

Exterr
(year)

Age
(year)

Interr
(year)

Exterr
(year)

Age
(year)

Interr
(year)

Exterr
(year)

OT01 Be-10 (qtz) 7762 195 645 7538 190 597 7086 178 455

OT02 Be-10 (qtz) 8872 276 755 8616 268 701 8040 250 537

OT03 Be-10 (qtz) 9319 251 779 9049 243 722 8441 227 548

OT04A Be-10 (qtz) 8880 226 739 8624 220 684 8049 205 518

OT05A Be-10 (qtz) 7658 191 635 7437 185 589 7002 175 449

OT05c Be-10 (qtz) 8348 213 694 8107 207 643 7587 194 489

OT07 Be-10 (qtz) 7592 186 629 7372 180 583 6947 170 444

OT08 Be-10 (qtz) 75 849 2036 6437 73 623 1975 5961 69 566 1864 4574

OT09 Be-10 (qtz) 8470 228 708 8225 222 657 7704 208 500

OT10 Be-10 (qtz) 8931 247 749 8673 239 694 8117 224 530

OT12 Be-10 (qtz) 69 114 1860 5858 67 089 1805 5426 63 550 1708 4175

OT13 Be-10 (qtz) 62 873 1875 5383 61 033 1819 4991 57 851 1723 3868

OT14A Be-10 (qtz) 6965 191 583 6764 185 541 6414 176 418

OT15 Be-10 (qtz) 6808 189 571 6612 184 530 6278 175 410

OT17 Be-10 (qtz) 5940 170 500 5768 165 464 5496 157 361

OT18 Be-10 (qtz) 40 665 1061 3414 39 482 1029 3163 37 629 981 2446

GPS01A Be-10 (qtz) 3980 111 334 3865 108 310 3599 100 235

GPS02C Be-10 (qtz) 34 463 921 2896 33 462 894 2684 31 606 844 2060

GPS03C Be-10 (qtz) 7681 196 639 7459 190 592 7031 179 452

T01A Be-10 (qtz) 16 476 435 1377 16 000 422 1277 15 017 396 973

T01C Be-10 (qtz) 16 243 670 1452 15 773 650 1354 14 803 610 1068

T01D Be-10 (qtz) 17 467 722 1563 16 962 701 1457 15 924 658 1150

T02 Be-10 (qtz) 6112 173 514 5935 168 476 5588 158 366

LW2BP Be-10 (qtz) 30 277 629 2491 29 399 610 2304 27 970 580 1760

LW2Ro Be-10 (qtz) 2833 101 246 2751 98 229 2558 91 176

LW215 Be-10 (qtz) 27 286 569 2244 26 495 552 2075 25 201 525 1586

R3-5 Be-10 (qtz) 25 555 779 2176 24 820 757 2020 24 204 738 1615

R3-6 Be-10 (qtz) 8429 373 765 8187 362 714 7918 351 585
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lowest elevation samples (n = 3) found at 1487 m.a.s.l are erratic cob-

bles from moraine deposit (Palmer et al., 2012) perched seven metres

above the modern Byrd Glacier and show a wide range of ages from

�28–25 to 2.6 ka. We interpret the youngest exposure age to repre-

sent the level of the ice surface at 2.6 ka while the two other samples

may contain inherited inventories of cosmogenic nuclides from prior

exposure.

3.3 | Mt. Tadpole

Two granitic erratic samples were collected �250 m above the mod-

ern Byrd Glacier at Mt. Tadpole, a site of exposed bedrock along the

southern Byrd Fiord (Figures 3c and S3). Calculated exposure ages are

24.2 ± 2.6 and 7.9 ± 0.9 ka. Here, we interpret the older age to repre-

sent inheritance from prior exposure/burial while the younger age

coincides with the thinning seen in the LW1 Nunatak record.

3.4 | Paleo-thinning rates

Paleo-thinning rates are a useful measure of past ice sheet change

for comparison with other records around Antarctica, while also pro-

viding assessments of modelled paleo-thinning rates and modern

satellite-based thinning estimates (Small et al., 2019). Using Transect

2 samples and the ‘estimate linear thinning rate’ tool (Jones

et al., 2019), the thinning rate for Tiger-GPS Nunataks is 0.01–

0.03 m/year (68% confidence) and 0.01–0.09 m/year (95% confi-

dence) (Figure 6a). For Transect 1, we determine a thinning rate of

0.08–0.14 (68% confidence) and 0.07–0.2 m/year (95% confidence)

(Figure 6b). Paleo-thinning records from inland East Antarctic sites

are rare, but a record from Mt. Kring along the upper David Glacier

(Figure 1a) shows a paleo-thinning rate of 0.07–0.12 m/year (68%

confidence) and 0.06–0.19 m/year (95% confidence) (Stutz

et al., 2021), similar to Holocene paleo-thinning calculated for

Transect 1 of this study.

F I GU R E 5 Kernel density estimate plots (Jones et al., 2019) for (a) four samples taken from broad plateau of LW1 with weighted mean
exposure age of 7.85 ± 0.5 ka and interpreted to track initial thinning at LW1 Nunatak and (b) three samples taken from highest sampling location
of the Lonewolf Nunataks (Tiger Nunatak) indicating a weighted mean exposure age of 15.2 ± 0.5 ka and interpreted to represent initial thinning
of the Lonewolf Nunataks following the Last Glacial Maximum.

F I GU R E 6 Paleo-thinning profiles and rates (Jones et al., 2019) for (a) transect 2 for all ages <20 ka, (b) transect 1 for all ages <20 ka.
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4 | DISCUSSION

4.1 | Variable thinning along Lonewolf Nunataks

While complex ice flow around nunataks and the impact on invento-

ries of cosmogenic nuclides has been suggested previously (Sugden

et al., 2005), this new record from Lonewolf Nunataks and recent ice

flow modelling (Mas E Braga et al., 2021) represent an additional

improvement in understanding processes involving localised ice-

topography interactions. Ice flow modelling (Mas E Braga et al., 2021)

suggests that in scenarios where nunataks are oriented parallel to ice

flow (e.g., Lonewolf Nunataks), we should expect to observe slower,

earlier thinning in the upstream portions of the nunatak compared

with the downstream portions (Mas E Braga et al., 2021), which is

consistent with our results from Transects 1 and 2. This ice flow

modelling, together with the observed strong topographic relief of

Lonewolf Nunataks and variable thinning histories, provides an expla-

nation for differences in ice thinning timing and style (Figure 4). Local

differences observed in this study and supported by ice flow model-

ling using a locally refined grid are not typically demonstrated in

coarser ice sheet models and may explain the common timing gap

between paleo-thinning records and ice sheet models (Johnson

et al., 2021; Jones et al., 2020; Stutz et al., 2021).

4.2 | Data-model comparison

The timing and rates of modelled ice thickness changes since the

LGM at Lonewolf Nunataks vary greatly between models and key

model parameters (Figure 7). Model ensemble A exhibits local ice

thicknesses of 200–900 m greater than present for the LGM. Of the

model parameters, ESIA, which is used to account for ice dynamical

uncertainty, exhibits the most influence on LGM ice thickness of Byrd

Glacier. The relationship between ice thickness and ESIA is nonlinear,

with an intermediate value producing the lowest ice sheet thickness.

In terms of the timing of deglacial ice thinning at Byrd, ESSA, which

controls ice sheet sliding in grounded ice regions, has the most signifi-

cant impact of the parameters. Lower values of ESSA, which produce

slower and thicker ice streams, yield a thicker LGM ice sheet and later

deglacial ice thinning.

Model ensemble B exhibits a narrower range of LGM thickness

anomalies that span 200–400 m greater than present (Figure 7b). The

model ensemble B simulations group according to variations in

the basal sliding coefficient (CSHELF) applied to grounded ice on the

modern seafloor, with values that promote greater sliding rates

resulting in thinner ice and vice versa. Simulations using the fastest

sliding coefficient produce a close match with the ca. 15-ka initial con-

straints from Tiger Nunatak but do not provide a good fit to the rest

of the record from Lonewolf Nunataks.

Despite wide variability in the modelled LGM ice thickness at

Lonewolf Nunataks, most simulations across both models predict that

ice thinning occurred in a single step of thinning. In model

ensemble A, the timing of this single step thinning varies noticeably

between simulations. The ensemble mean onset of thinning events of

13.2 ± 1.3 ka (±1.s.d) with a duration of 4.1 ± 1.0 ka. In contrast,

model ensemble B simulations are relatively consistent across the

parameter space, with thinning beginning 9.8 ± 0.4 ka and lasting 1.8

± 0.4 ka. These simulations support a conceptual model of progressive

southward grounding line retreat following the LGM (Lowry

et al., 2019).

In both model ensembles, the timing of this thinning at Lonewolf

Nunataks precedes that recorded in the LW1 sample set by several

millennia (Figure 7). Only one model run (model ensemble set A;

ESSA = 0.4) produces an ice thickness anomaly curve that closely

matches the timing as recorded in the LW1 Nunatak samples, how-

ever this simulation predicts an LGM and early deglacial ice thickness

that exceeds the 15-ka constraint from Tiger Nunatak by �600 m

(Figure 7a).

Despite the mismatch in ice thickness at 15 ka and early onset of

thinning relative to the geological constraints, the modelled rates

of thinning at Lonewolf Nunataks are broadly comparable with those

derived from our cosmogenic constraints. Both model ensembles are

F I GU R E 7 Modelled ice thickness at Lonewolf Nunataks as simulated by the model ensemble A (panel a; Lowry et al., 2019, 2020) and model
ensemble B (panel b; Hillebrand et al., 2021). In panel (a), the ESIA and ESSA sensitivity experiments are distinguished to support the written
discussion, whereas outputs for other experiments (see Methods for full description) are uniformly grey. Identical in both panels are cosmogenic
10Be ages from Transect 1 (magenta) and Transect 2 (cyan).
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in good agreement with ensemble mean average thinning rates of

0.15 ± 0.05 m/year and 0.13 ± 0.04 m/year for A and B, respectively

(Table 5).

4.3 | Inland thinning and grounding line retreat in
Ross Embayment

Comparing the thinning history derived from Lonewolf Nunataks

against those from regional ice sheet models, we link inland thinning

to grounding line retreat in the Ross Sea. Modelled grounding line

location varies between the two ensemble sets yet all retreat and

modelled thinning happens during one event. A single, abrupt thin-

ning event is also recorded in adjacent TAM outlet glacier thinning

records south of Northern Victoria Land (including David, Mawson,

Mackay, Darwin-Hatherton, Beardmore, Shackleton, Scott and

Reedy Glaciers) suggesting a western Ross Sea trend in abrupt thin-

ning initiating or underway between �9 and 8 ka (Hillebrand

et al., 2021; Jones et al., 2015, 2020; King et al., 2020; Spector

et al., 2017; Stutz et al., 2021) (Figure 8). The timing of grounding

line retreat during this time comes from submarine mapping, sedi-

mentary core analysis and bulk and foraminifera radiocarbon dating

from post-LGM sediments (Domack et al., 1999; Lee et al., 2017;

R. M. McKay et al., 2008; Prothro et al., 2020; Shipp et al., 1999).

Immediately east of Ross Island and along a prominent Byrd Glacier

flow path, open marine conditions were established by 8.6 ka near

the modern-day calving line of the Ross Ice Shelf (R. McKay

et al., 2016).

Most thinning records, constrained by surface exposure dating,

from southern TAM outlet glaciers are located near the coastal

outlet where greater ice thickness change and rapid ice thinning is

expected as grounding lines retreated inside the fiords. In contrast,

the Byrd Glacier is significantly larger, in terms of ice discharge

and overall drainage area, than all other southern TAM glaciers

combined. The large scale of the Byrd Glacier, together with its

gentle inland topography, suggests inland thinning can reach further

inland than other nearby outlet glaciers, which exhibit relatively

steep elevation profiles immediately upstream from the modern

grounding line (Felikson et al., 2017, 2021) (Figure 9). This inland

reach of ice mass loss implies that the Byrd Glacier can contribute

much more to sea level rise. Additionally, in situ measured extreme

basal melt at the ice shelf front (Stewart et al., 2019) could initiate

an increase in velocity reaching as far as the Lonewolf Nunataks, a

future scenario which could force a grounding line retreat of the

Byrd Glacier to a prominent stable ridge upstream of its current

position (Morlighem et al., 2020; Reese et al., 2018; Stearns

et al., 2008).

Taken together, our data-ice sheet model analysis supports a pro-

gressive southward grounding line retreat initiated during the early

Holocene and associated with rapid inland thinning (Figure 2). Notably

both model ensembles exhibit the most rapid thinning following ice

shelf formation. Such a connection between basal sliding and down-

stream shifts in glacial extent are supported by recent studies of

uplifted subglacial precipitates. These studies highlight a strong cou-

pling between climate-regulated ice sheet variances in the Ross Sea

and basal freeze-flush cycles within TAM outlet glaciers (Blackburn

et al., 2020; Piccione et al., 2022).T
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5 | CONCLUSIONS

In this study, we use glacial erratic cobbles to provide new inland

paleo-thinning constraints for the Byrd Glacier, one of the largest gla-

ciers on Earth. We close a significant spatial and temporal gap in past

AIS reconstruction by constraining the upper Byrd Glacier’s thinning

history from �15 to 2 ka. Its thinning history broadly overlaps with

paleo-thinning records from nearby TAM outlet glaciers with some

variation in onset of thinning, potentially due to local factors related

to complex topography near the TAM. Rapid ice thinning at �9–8 ka

in nearly all available records demonstrates the regional, single-step

ice thinning signal related to grounding line retreat throughout the

Ross Embayment. Our data-model comparison demonstrates that

inland thinning extends 100s km from perturbations at the grounding

line and ice shelf front and is linked to temporal changes in the basal

sliding regime.
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