
1. Introduction
Estimating return periods for extreme low-flow and flood events may result in large associated uncertainties 
due to the relatively short observational records of streamflow (Koutsoyiannis & Montanari 2007), espe-
cially in regions where climatological influence on streamflow variability has a low-frequency component 
(e.g., Enfield et al.,  2001). Paleoclimate reconstructions based on tree-ring chronologies have been used 
to extend instrumental streamflow data across the world (e.g., Gou et al., 2007; Meko et al., 2020; Urrutia 
et al., 2011; Rao et al., 2018). Notable reconstructions from the United States include past estimates for the 
San Joaquin-Sacramento River (Meko et al., 2001) and the Colorado River (e.g., Woodhouse et al., 2006). 
These types of proxy records play a potentially increasing role in U.S. water management for understand-
ing long-term variability (Rice et al., 2009; Tingstad et al., 2014; Woodhouse et al., 2016), runoff efficiency 
(Cleaveland & Stahle, 1989; Woodhouse & Pederson, 2018), as well as the frequency, magnitude, and persis-
tence of extreme events (Gonzales & Valdes, 2003; Razavi et al., 2015; Woodhouse et al., 2013).

Traditional dendroclimatic studies have focused on identifying the strongest climate signal in the tree-
ring record (Cook et al., 1999), often an aggregated soil moisture variable such as growing-season Palmer 
Drought Severity Index (PDSI, Palmer, 1965). However, this aggregate signal is driven by different season-
al precipitation components depending on species and local climatology (St. George et  al.,  2010; Stahle 
et al., 2020). In recent decades, an increasing number of seasonally resolved hydroclimate reconstructions 
have been produced (e.g., Stahle et al., 2009; Torbenson & Stahle, 2018). The extrapolation of warm season 
streamflow signal in tree rings has also been shown to have skill on bi-weekly to monthly scales (Sauchyn 
& Ilich, 2017; Stagge et al., 2018). Although significant work has been done to improve our understanding 
of the predictor variables of tree-ring based streamflow reconstruction, including predictor selection (Ho 
et al., 2016; Saito et al., 2008; Strange et al., 2019), standardization techniques (Meko et al., 2015), and the 
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application of Bayesian modeling (Devineni et al., 2013; Ravindranath et al., 2019), less attention has been 
given to the target variable to be reconstructed—the instrumental streamflow data.

The Potomac River is the main source of water for the Washington, DC, metropolitan area. Increases in 
the region’s population are expected for the 21st century, which will be coupled with net increases in water 
usage (Bhatkoti et al., 2018; Schultz et al. 2017). Forecasts estimate a 12% increase in average annual water 
demand between 2015 and 2040 (Ahmed et al., 2015). Water vulnerability, especially due to drought, is a real 
concern and long-term estimates can therefore provide a greater understanding of the range of conditions 
that may be experienced in a changing climate (Stagge & Moglen, 2017; Tebaldi et al., 2006). Three recon-
structions of Potomac River summer streamflow have previously been produced using tree-ring data (Cook 
& Jacoby, 1983; Maxwell et al., 2011, 2017). These reconstructions suggest that there have been years and 
periods in the past for which the trees indicate conditions outside the range of observational records for the 
of the 20th and early 21st centuries, from which the “drought of record” is defined for planning purposes.

In this paper, we revisit the relationship between eastern U.S. tree growth and Potomac River streamflow 
variability. Using daily instrumental streamflow data at Point of Rock, MD, baseflow and stormflow com-
ponents are separated, accumulated to seasonal means, and ultimately correlated to members of a network 
of regional tree-ring chronologies. Three reconstruction approaches are compared: (1) a traditional linear 
model using a log-transformed streamflow reconstruction target; (2) a generalized linear model (GLM) with 
linked gamma-distributed streamflow for a target; and (3) a GLM with a gamma-distributed baseflow target. 
Reconstructions of June-to-August (JJA) base and streamflow are produced spanning 1666 to the present 
day. In addition, experimental reconstructions of December-to-February (DJF) base and streamflow are 
presented for the same period.

2. Data and Methods
To test the differing roles of theoretical flow constituents in tree growth signals, and the effect of this choice 
on subsequent reconstructions, tree-ring chronologies from the Mid-Atlantic of the eastern US were corre-
lated with instrumental Potomac River streamflow data, as well as separated baseflow and stormflow. The 
three candidate reconstruction models were compared for a common calibration period for cool and warm 
seasons, resulting in a total of six models.

2.1. Instrumental Streamflow

Daily instrumental streamflow data were based on the United States Geological Survey (USGS) gage 
01638500 at Point of Rocks, MD (39°16′24.9″N, 77°32′35″W). The full 01638500 gage series begins in 1895 
and extends to the present. The instrumental gage data was adjusted by the Interstate Commission on the 
Potomac River Basin (ICPRB) to create a naturalized flow series by reinserting upstream withdrawals and 
reservoir impacts. The resultant naturalized series covers the period October 1, 1929 to November 30, 2007. 
While this limits the available length for model calibration purposes, it more accurately represents the river 
in its natural state, as would be captured by tree-ring proxies, and avoids two major streamflow gage chang-
es in September 1902 and October 1929. Beginning the model calibration after 1929 also avoids some of the 
most severe clearcutting of forests during the 1895–1910 period, which might also introduce inhomogenei-
ties or trends into the underlying flow signal (Cook & Jacoby, 1983). The original, un-naturalized instru-
mental series was used for validation purposes between 1895 and 1929, as it provides a convenient hold-out 
period with gaged data. Direct comparison of reconstructed naturalized flow and gaged un-naturalized flow 
is reasonable for this validation period because it is prior to construction of the Savage and Jennings Ran-
dolph Reservoirs, in 1953 and 1981, respectively, making naturalization relatively insignificant.

The Potomac River watershed covers 38,000 km2 and four states, with its headwaters in eastern West Virgin-
ia and western Virginia/Maryland. Streamflow at the Point of Rocks gage historically peaks in March and 
reaches its lowest levels during late summer (July, August, and September). Point of Rocks is a critical gauge 
for water management decisions in the Washington, DC, metropolitan area because it lies 2.4  days up-
stream of the Washington DC water treatment intakes (Ahmed et al., 2015; Hagen et al., 2005). This 2.4 days 
buffer allows water managers to forecast flow at the operational target Little Falls gauge using a simple 
flow accumulation model. Managers can then anticipate shortages during low-flow periods and fine-tune 
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reservoir release or load shifting decisions. The Potomac River is located in a transitional region for the ob-
served effects of climate change, with flows generally predicted to decrease to the south and increase to the 
north of the watershed (Yang et al., 2015). Observed and projected changes in the Potomac have been more 
nuanced and seasonal, with increases in winter/early spring flow and decreases in summer flow (Rice & 
Hirsch, 2012; Stagge & Moglen, 2013). These trends are not large relative to annual vulnerability, providing 
confidence in the period for use in proxy-calibration.

2.2. Baseflow Separation

Separation of streamflow into baseflow and stormflow components was based on separating the daily in-
strumental time series, which was then aggregated to monthly baseflow and stormflow for reconstruction 
purposes. Baseflow separation was performed by the HYSEP sliding interval method (Sloto & Crouse, 1996) 
using the DVstats R package developed by the United States Geological Survey (USGS, Lorenz, 2017). The 
sliding interval method is an empirical separation approach that estimates baseflow using the minimum 
flow during a period centered on the day in question. The width of the moving window period is typically 
chosen as twice the travel time for storm runoff (2N) rounded to the nearest odd integer, where N repre-
sents the number of days after which surface runoff effects cease following a storm event (Pettyjohn & 
Henning,  1979). For this study, we assumed the empirical relationship provided in HYSEP guidance of 
  0.20.83N A  where A is the drainage area in square kilometers, resulting in N of 6.5 days and a sliding in-

terval width of 13 days. This matches well with traveltime observations during low-flow operations, which 
showed a traveltime of approximately 9–10 days from the headwaters to Little Falls (Ahmed et al., 2015). 
During low-flow conditions, lag between Point of Rocks (reconstruction target) and the downstream Little 
Falls is 2.4 days, making travel time to Point of Rocks approximately 6.6–7.6 days. Lag times vary with flow, 
but this 6.6–7.6 days range agree with our proposed sliding interval of 6.5 days.

The HYSEP sliding interval method was chosen because of its common use within the hydrologic commu-
nity, simplicity of interpretation, and performance in prior studies (Eckhardt, 2008; Gonzales et al., 2009; 
Partington et al., 2012; Schultz et al. 2014). Identifying the true baseflow contribution in observations is 
difficult without involved tracer studies, and even then, it is uncertain. However, in simulated small wa-
tersheds the sliding interval outperformed other separation techniques for sandy soils, though underper-
formed in sandy loam soils (Partington et al., 2012), though it underperforms in sandy loam soils. It should 
be noted that this simulated watershed was four orders of magnitude smaller than the Potomac. The Po-
tomac watershed has sufficient elevation gradient, which avoids the documented issue of poor performance 
in flat, lowland watersheds (Gonzales et al., 2009). Several other approaches to flow separation exist (Lott 
& Stewart, 2016). To further confirm our choice of baseflow separation method, we compared the resultant 
baseflow timeseries with an alternative UKIH method (Piggott et al., 2005). The differences between the 
resulting timeseries were minor for the 1931–1980 period (r = 0.987 and 0.992 for DJF base and stormflow 
respectively; 0.951 and 0.996 for JJA). Results presented for the remainder of this study are based solely on 
the HYSEP sliding interval series.

2.3. Tree-Ring Chronologies

Earlywood (EW), latewood (LW), and total-ring width (TRW) chronologies from the northeastern Unit-
ed States (32–48°N, 65–87°W) available through the International Tree-Ring Data Bank (ITRDB; Zhao 
et al., 2019) were correlated with monthly resolved baseflow, stormflow, and streamflow series, as well 
as with seasonalized flow totals for DJF and JJA, for the full common period 1931–1980. In most den-
droclimatological reconstructions utilizing a large network of data, only a subset of chronologies is used 
as predictors for the final estimates of past variability because of differing climatic signals (e.g., Cook 
et al., 1999). Because the candidate reconstruction models have different target variables (total stream-
flow, baseflow), these models could dictate different sets of predictor chronologies. To ensure a fair mod-
el comparison, we apply a common correlation threshold to objectively select a subset of chronologies 
tailored for each model. Chronologies that displayed a Spearman correlation >0.37 (p < 0.01) with sea-
sonally resolved flow were selected as possible time series for Principal Components Analysis (PCA; Jol-
liffe, 2002). The final predictor pools contain EW, LW, and TRW records. To minimize exaggeration of  
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season-to-season persistence, no TRW chronology could be considered for both cool and warm season 
(Stahle et al., 2020; Torbenson & Stahle, 2018). If a chronology was significantly correlated with aggre-
gates of both seasons, it was considered a predictor variable for the season in which it displayed the 
highest correlation. For EW and LW records, alternate chronologies from the same site were allowed as 
predictors for different seasons. For the JJA window, chronologies with no significant correlations with 
DJF or JJA flow for year i were considered as lagged predictors (flow in year i−1) as some tree species are 
known to store photosynthate (e.g., Aloni, 1991).

2.4. Candidate Reconstruction Models

The first PC in year i from this analysis served as the predictor in three different reconstruction approaches:

 (1)  A simple linear regression model (M1) with log-transformed streamflow as the predictand

    , 0 1 1,l g ˆo stream i iQ PC 

  (2)  A generalized linear model (M2) with streamflow fitted using a gamma distribution with shared shape 
parameter, υ, and a scale parameter, θi, which in turn is controlled by the identity link with the expect-
ed value, g (µi)
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  (3)  A generalized linear model (M3) with baseflow fitted using a gamma distribution
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The stormflow component is estimated and added to the reconstruction to produce total streamflow esti-
mates (see below).

Model 1 was performed to establish a baseline, mimicking the regression approaches used in prior studies 
(Cook & Jacoby, 1977; Maxwell et al., 2011, 2017). Model 2 uses a Generalized Linear Model (GLM) with 
gamma-distributed response through the identity link function, which assumes that the residuals of the 
target predictand are gamma distributed with a common shape parameter (1/dispersion) and a scale pa-
rameter that varies with the estimate. It is hypothesized that because flow is strictly positive (>0) and tends 
to have a positive skew, with a long upper tail, a gamma-distributed response will produce a reconstruction 
with less bias. Further, predictions from a regression model fit in log-space and backtransformed can be 
systematically biased because of Jensen’s Inequality (Ruel & Ayres,  1999). Ignoring this violation of re-
gression assumptions can over-emphasize high flows in proxy-calibration. Model 3 uses the same Gamma 
GLM framework, but instead seeks to reconstruct the baseflow component from the proxy and estimate the 
remaining stormflow postcalibration. The stormflow estimates for M3 were calculated by adding the por-
tion of variability shared with baseflow each year and the mean climatology of the independent stormflow 
(based on the instrumental data):

 
 

        
2 2

ˆ ˆ ˆ
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stream base storm

storm base s storm s
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where Q̂ represents estimated for each of the three components: streamflow, stormflow, and baseflow. stormQ  
represents the mean climatology of stormflow, 2

sr  represents  2 ,storm baser Q Q , the historical percent shared 

variance of stormflow explained by baseflow. K represents the scale factor of the relative contribution of 
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Water Resources Research

stormflow in streamflow. The uncertainty estimates for M3 streamflow include the range of the independ-
ent climatology of stormflow, relative to the total contribution of stormflow.

2.5. Model Calibration and Validation

Model calibration was performed on the full common period 1931–1980 to limit the risk of overfitting and 
any possible bias from extended periods of persistent conditions (e.g., the 1960s drought). Because of differ-
ing start dates of the predictor chronologies, a nested approach in which the number of tree-ring chronolo-
gies decreased back in time was taken. The nests were spliced together, using the nest of maximum number 
of chronologies entered into the PCA for each segment to produce a continuous time series. Reconstruction 
later than 1980 was not feasible because several chronologies are not available for the more recent period.

The resulting reconstructions were compared with pre-1930s instrumental streamflow data as a form of 
validation. As described above, these early observations have not been naturalized and may have been in-
fluenced by human activity (Cook & Jacoby, 1983), but human effects should be relatively small, allowing 
for further verification of the models, outside the calibration period. Furthermore, the naturalized time 
series represents the interannual variability of un-naturalized flow, and therefore should not affect any cor-
relation analysis. In addition, selected years of reconstructed extreme flows were compared to historically 
documented records of drought and flood.

3. Results
3.1. Proxy Correlations

A total of 193 TRW chronologies and 25 pairs of EW/LW chronologies were screened for correlation with 
Potomac River flow variability. The number of chronologies that display significant correlations (p < 0.01) 
with total stormflow (Figure 1c) is lower than for both total streamflow and baseflow (Figures 1a and 1b, 
respectively). Two distinct seasons of significant correlations are visible for stream and baseflow: Decem-
ber-February and June-August (Figure 1). Few chronologies show significant correlations with March-May 
flow; the transitional period between these seasons and also the period of peak annual flow at Point of 
Rocks. The number of chronologies showing significant correlations with mean flow for the cool (DJF) and 
warm (JJA) season windows are presented in Table 1.

The locations of selected tree-ring chronologies (Figure 2; Tables S1 and S2) largely agree with the corre-
lation between seasonal streamflow and early/late growing-season soil moisture and precipitation (Fig-
ure S1). No EW/LW pairs were selected for both seasonal predictor pools. The positive relationship between 
DJF streamflow and May PDSI extends from the Potomac watershed to the Canadian border and as far west 
as Missouri. Correlations between summer precipitation and streamflow are less extensive, and mainly 
confined to the basin. Counts are lower for streamflow than for baseflow for both seasons, but the differ-
ence is greater for JJA. The loss of chronologies due to the discrete condition (predictors cannot be shared 
between seasons) is greatest for the JJA streamflow reconstructions (M1/M2) and the DJF baseflow model 
(M3). Overall, the average correlation between selected chronologies and flow does not differ significantly 
between models/selection criteria.

Correlations between the reconstructed values of streamflow and the un-naturalized early instrumental 
data (1897–1930) are generally low for both seasons (Table 2). The only significant correlation for the val-
idation period present in the models is exhibited by M3 for JJA (r = 0.527). Although the precalibration 
validation statistics only suggest modest skill in the reconstructions, comparisons with contemporaneous 
historical records corroborates many years of extreme flow prior to 1931 (see below).

3.2. Model Calibration and Validation

The DJF M1 explains 36% of the variance in instrumental streamflow for the calibration period (Figure 3a). 
The use of a GLM and a fitted gamma distribution (M2) produces marginally better statistics (39% explained 
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Water Resources Research

variance). The third model explains 43% of the baseflow variance but when adding the stormflow compo-
nent of streamflow to the final reconstruction the statistics weaken to 37%. For JJA (Figure 3b), M1 displays 
less skill than M2 and M3 but the overall results are weaker than for DJF, ranging from 24% to 26% of the 
explained variance. It is worth noting that the baseflow reconstruction of M3 for JJA explains 44% of the 
variance during the calibration period, suggesting that the hydroclimate signal in tree growth is more at-
tuned to the baseflow constituent in summer than during the start of the growing season.

Due to the relatively weak overall relationship between instrumental and reconstructed data, the recon-
struction variances are lower than the instrumental data for the calibration period. The loss of explained 
variance is greater for JJA than for DJF. The most replicated nests for M3 start in 1755 (DJF) and 1750 (JJA), 
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Figure 1. Number of tree-ring chronologies significantly correlated (p < 0.05/0.01) with monthly (a) streamflow, (b) 
baseflow, and (c) stormflow at Point of Rocks, MD, for the period 1931–1980. Asterisks denote months of the previous 
year.

(a)

(b)

(c)
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Water Resources Research

and the resulting reconstructions span 1666 to 1980 (Figure 4; Figure S2; 
statistics of the individual nests are given in Table S3).

3.3. Residual Analysis

The reconstructed DJF baseflow is significantly correlated with instru-
mental DJF stormflow (r = 0.498) for the calibration period, likely due 
to the natural hydrologic correlation between baseflow and stormflow 
captured in the instrumental record (r = 0.777; Figure 5). To assess the 
dominant signals in the tree-ring records, residuals from a simple regres-
sion of the M3 baseflow reconstruction (Q̂base) on the instrumental storm-
flow (Q storm; Figure  5a) and the instrumental baseflow (Q base) on the 
instrumental stormflow (Q storm; Figure 5b) were produced. The residuals 
from these two regressions are significantly correlated over the calibra-
tion period (r = 0.486; Figure 5c). Regressing the instrumental stormflow 
on the reconstructed baseflow, and the instrumental stormflow on the 
instrumental baseflow, produces two residual time series that are not cor-

related (r = −0.017; not shown), suggesting that the baseflow reconstruction does not contain any “leftover” 
stormflow information.

Similarly, the estimated JJA baseflow is positively correlated with instrumental JJA stormflow (r = 0.369), 
although significantly weaker than the instrumental base and stormflow correlation (r  =  0.726; Fig-
ure S3ab). The difference in skill between baseflow and streamflow models is greater for the JJA seasonal 
window (Table 2). Correlation between the residual time series is high (r = 0.618; Figure S3c). The residual 
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  # Chrons (DJF_dis)
Ave. 
Corr. # Chrons (DJF_all)

Ave. 
Corr.

M1/M2 16 0.442 19 0.441

M3 17 0.453 26 0.451

# Chrons (JJA_dis) # Chrons (JJA_all)

M1/M2 10 0.429 17 0.433

M3 18 0.458 23 0.467

DJF_dis and JJA_dis indicate counts of discrete (i.e., nonoverlapping) 
chronologies only and DJF_all and JJA_all indicate nondiscrete counts.

Table 1 
Counts of Chronologies, and Their Average Correlation, That Display 
Significant Correlation With Base/Streamflow for Each Season and Were 
Used as Predictors

Figure 2. Location of tree-ring chronologies displaying significant correlations (p < 0.01) with (a) DJF and (b) JJA baseflow at Point of Rocks, MD, for the 
period 1931–1980. Circles represent predictors from year i, diamonds represent predictors from year i + 1 (JJA only). Black outline in map inset indicates 
location of region in (a) and (b). DJF, December-to-February; JJA, June-to-August.
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Water Resources Research

“independent” stormflow correlation for JJA is negative but not signifi-
cant (r = −0.216). JJA stormflow and baseflow are more subject to high 
outliers than the winter season.

4. Discussion
Reconstructing streamflow from tree-ring chronologies comes with 
numerous challenges. Streamflow for many U.S. rivers does not follow 
a normal distribution, as is the case for the Potomac River at Point of 
Rocks. Furthermore, streamflow variability is the result of several dif-
ferent hydrological processes that may not evenly be connected to tree 
growth. Our results suggest that instrumental data treatment, such as 
the separation of flow into base and storm constituents, and alternative 
regression approaches (including the application of GLMs) can mitigate 
some of these issues and help provide more accurate estimates of recon-
struction uncertainties.

4.1. Model Comparison

The skewed distribution of streamflow can cause negative reconstructed values if using raw data as the 
predictand in a traditional simple regression model that assumes gaussian residuals, including near zero. 
Maxwell et al. (2011, 2017) used a log-transformed target to address this issue, however, the resulting re-
construction underestimates the mean summer streamflow for the instrumental era (similar to Cook & 
Jacoby, 1983). Part of this underestimation may stem from Jensen’s Inequality (Ruel & Ayres, 1999), which 
describes how backtransforming can consistently over-predict or under-predict in the original coordinates. 
Although the year-to-year variability still represents the streamflow signal in tree growth, the log-trans-
formation adds additional obstacles when comparing instrumental data with reconstruction estimates. 
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Calibration Validation

DJF Base (r2) Stream (r2) USGS 1897 – 1930 (r)

M1 N/A 0.364 0.184

M2 N/A 0.387 0.179

M3 0.426 0.370 0.187

JJA Base (r2) Stream (r2) USGS 1897 – 1930 (r)

M1 N/A 0.239 0.216

M2 N/A 0.258 0.244

M3 0.440 0.248 0.527

Table 2 
Calibration Statistics (1931–1980) and Correlation With Precalibration 
Instrumental Streamflow Data for the Three Models

Figure 3. Time series comparison between instrumental (dashed line) and three different models of reconstructed streamflow for (a) DJF and (b) JJA. The gray 
horizontal line represents the instrumental mean for 1931–1980. DJF, December-to-February; JJA, June-to-August.

(a) (b)
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Reconstruction statistics calculated for the log-space do not necessarily represent the relationship between 
instrumental flows and estimated data in true streamflow units (Prairie et al., 2006) and therefore risk over-
stating the skill of the reconstruction. Such biases can be accounted for (e.g., Helsel et al. 2020) but are for 
comparison purposes not considered here.

The GLM approach produces slightly stronger statistics than the linear regression with a log-transformed 
target for the calibration period (Table 2) but the differences are not statistically significant for either season 
(p > 0.05; Fisher, 1921). All models, including the linear log-transformation (M1), capture the mean flow 
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Figure 4. Model 3 reconstructions of baseflow at Point of Rocks, MD, extending from 1666 to 1980 based on two separate networks of tree-ring chronologies 
in the Mid-Atlantic region: (a) DJF and (b) JJA, with the gray band representing 5–95% prediction confidence interval. DJF, December-to-February; JJA, 
June-to-August.

 19447973, 2021, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020W

R
027706 by O

hio State U
niversity O

hio, W
iley O

nline L
ibrary on [19/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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of the instrumental data for the calibration period, which is expected with simple one-predictor regression 
models. No significant differences between M1 and M2 validation correlations are recorded. Because the 
two models utilize the same predictor set and are calibrated on the same target, these results must be con-
sidered predictable. Model three is discussed in detail below.

4.2. Streamflow Versus Baseflow

The results from correlating tree-ring records with separated constituents of flow suggest that the inter-
annual streamflow signal exhibited in trees around the Potomac River basin is predominantly connected 
to baseflow. The variability of growth appears to be less correlated with direct overland runoff, evident by 
the low number of chronologies significantly correlated with stormflow (Figure 1). This is despite storm-
flow making up a significant part of total streamflow volume and being closely tied to baseflow variabili-
ty. This difference follows logically from the catchment perspective, in which precipitation is parsed into 
infiltrated water, controlled by soil parameters, and surface runoff excess. Infiltrated precipitation drives 
subsurface water storage, which is utilized by trees, and simultaneously drives the baseflow component of 
total streamflow (Figure 6). Theoretically, the stormflow component should be composed only of overland 
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Figure 5. Scatterplot between reconstructed DJF baseflow and instrumental DJF stormflow (a), and instrumental DJF baseflow and DJF stormflow (b), for the 
period 1931–1980. A time series comparison between the residuals of a simple regression (panels a and b) is presented (c). DJF, December-to-February.

(a)

(c)

(b)

 19447973, 2021, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020W

R
027706 by O

hio State U
niversity O

hio, W
iley O

nline L
ibrary on [19/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

runoff, which does not interact with subsurface water storage used by trees and should have no causal link 
to tree growth. This matches our finding of few significant chronology correlations with the stormflow 
component (Figure 1). Rather than a causal link, the correlation peaks are likely due to imperfect baseflow 
separation and the spurious correlation caused by precipitation acting as a confounding variable for both 
baseflow and stormflow. This causal framework also helps to explain why the residual time series of “inde-
pendent” stormflow from the reconstructed and instrumental data are not correlated. Once the influence of 
baseflow is removed, stormflow has no remaining information, further confirming that this is correlation 
without causation. This is the result one would expect from the unidirectional causality proposed in Fig-
ure 6, where baseflow and stormflow share a common driver, but where baseflow cannot directly influence 
stormflow. Because base and streamflow are highly correlated (r = 0.937/0.867 for DJF and JJA, respec-
tively, 1931–1980), the difference in counts of significant correlations is not extreme (Table 1). However, if 
the relationship between tree growth and stormflow is random (beyond the correlation between base and 
stormflow), directly reconstructing total streamflow (baseflow + stormflow) risks adding stormflow “noise” 
to the baseflow “signal,” thus degrading the signal-to-noise ratio.

As described above, baseflow and stormflow are driven by different hydrological processes and thus oper-
ate on different timescales. We suggest that tree-ring proxies in the Mid-Atlantic are tuned strongly to one 
of these constituent flow signals, e.g., baseflow, rendering the other constituent (stormflow) as correlated 
“noise” in a full streamflow reconstruction, related by the confounding variable of precipitation (Cook & 
Kairiukstis, 1990). This stormflow noise can represent a large proportion of total streamflow and have a 
highly skewed distribution because once soil is saturated, an additional unit of precipitation will have a 
negligible effect on subsurface water. By calibrating on a target with a greater amount of noise, there is a 
risk that the noise can mask the target signal and impart more information on the precalibration estimates, 
leading to weaker verification statistics and greater uncertainties associated with the reconstruction (Wigley 
et al., 1984). Simply put, the baseflow model (M3) calibrates on a less noisy target hydrologically closer to 
the tree-ring proxy and adds random noise to the reconstruction postcalibration, mimicking the assumed 
physical processes (Figure 6), while the streamflow models (M1 and M2) calibrate on a target that includes 
the full amount of noise. The lack of stormflow signal in the selected tree-ring chronologies is supported by 
residual analysis (Figure 5).

Ultimately, the degradation of signal could decrease correlation enough to prevent chronologies from being 
selected in the initial screening process and therefore a baseflow reconstruction with noise added postcali-
bration may increase the predictor pool and perform better than using streamflow as a predictand. As shown 
with the Potomac River flow for two different seasons, the number of chronologies that are significantly 
correlated with baseflow is higher than for streamflow (Table 1). The potential bias of performing PCA on 
a smaller subset of time series is evident when comparing the resulting reconstructions from a “discrete” 
seasonal approach (chronologies may only be used for one of the two seasons) to one using all significant 
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Figure 6. Proxy-based flow reconstruction approach superimposed on the hydrological cycle. Processes are separated 
by domain or scale, and color.
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Water Resources Research

chronologies (including those with higher correlation with the alternate season flow). The reconstruction 
of JJA explains less variance than that of DJF (Table 2), despite covering part of the growing season of the 
Mid-Atlantic region. The lower statistics may be explained, in part, by the selection threshold applied. As 
with DJF, the relationship between tree growth and baseflow is stronger than with tree-ring growth and 
total streamflow. Correlations with early period USGS data (1901–1930) are higher for JJA compared to the 
DJF reconstructions; however, correlations between instrumental and reconstructed streamflow are signif-
icantly higher when targeting baseflow (M3), than when targeting total streamflow (M1/M2; Table 2). For 
M3, the precalibration and calibration correlations suggest a relatively stable relationship between tree-ring 
variability and hydroclimate.

Although the discrete DJF and JJA reconstructions display higher correlation than that of the instrumental 
data, it is lower than for reconstructions that allow overlapping predictors. The significant difference in 
correlation indicates that taking a “discrete” approach targets the independent variability to a greater extent 
and that any added correlation for the “all” approach allowing seasonally shared predictors stems mainly, 
or solely, from the shared predictor pool. The resulting JJA reconstructions from Models 1 and 2, which 
contain only 10 predictor chronologies, display significant trend over the past 250 years (Figure S4). The 
streamflow reconstruction produced from M3, with a higher number of predictors, does not contain any 
significant trend for the same period. When allowing chronologies to be predictors for both seasons, the 
total number of chronologies for M1/M2 increases to 17 and the resulting reconstructions no longer contain 
any significant positive trend. In addition to the higher number of chronologies going into the model, there 
may be further value in having separate baseflow reconstructions (e.g., baseflow is thought to have a strong-
er connection to the chemical water cycle (Koskelo et al., 2012). It is also possible that future work could 
produce predictors tuned to stormflow, and even at less fine resolutions these could be studied in tandem 
(e.g., Toomey et al., 2019).

4.3. Seasonal Reconstructions of Potomac River Streamflow

The DJF reconstruction of Potomac River flow is the first of its nature. Tree-ring based reconstructions 
of eastern North American winter hydroclimate are relatively rare, largely due to local climatology and 
the biophysical response of the trees (e.g., Cook & Jacoby, 1977). Unlike the western United States and 
Mexico, where growing-season soil moisture is reliant on winter and early spring precipitation (e.g., Stahle 
et al., 2009), rainfall during late spring and the summer is the main hydroclimatic driver of tree growth east 
of the hundredth meridian, 100°W (D’Orangeville et al., 2018; St. George, 2014) However, we argue that 
there are biophysical and hydroclimatic reasons for why tree rings in the Mid-Atlantic region displays a 
significant relationship with winter flow. Persistence between streamflow and soil moisture is evident, with 
Potomac River winter streamflow significantly correlated with drought conditions during the early growing 
season over a large area of the basin (as measured by May PDSI; Figure S1a), thus providing a feasible pro-
cess link between tree growth and winter streamflow. The region of positive correlation broadly matches 
the spatial extent of significant DJF tree-ring chronologies, extending further than the relationship between 
summer streamflow and summer PDSI (Figure S1b), most likely due to the more localized convective na-
ture of summer rainfall. Potomac River DJF baseflow can explain over 40% of the variance in May PDSI for 
several grid points in the catchment area. The relationship between streamflow and soil moisture is further 
strengthened by general temporal autocorrelation in both variables, although the magnitude varies between 
climatologies. For the Potomac River, stream and baseflow in February are significantly correlated with flow 
in June (r = 0.388 and 0.421, respectively, during the calibration period).

The persistence in the flow-soil moisture relationship is also reflected in correlations between baseflow and 
tree-ring chronologies from the Mid-Atlantic. The average signal is modest but the common response in 
tree-ring chronologies that are significantly correlated with Potomac River baseflow variability allows for 
past estimates of flow. All three models, including M3 which is only calibrated to baseflow, explain over 
35% of the variance in DJF streamflow variability for the calibration period (Table 2). Comparisons with 
the early, precalibration USGS data reveal weak albeit positive correlations. Extreme years prior to the cali-
bration period match historical records of flood and drought. Among these years is 1839, the lowest year 
of reconstructed DJF flow, for which eastern United States drought conditions have been described during 
the infamous “Trail of Tears” (Perdue & Green, 2007). Early observations from the Washington, DC, GHCN 
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precipitation gauge USW00093725 (Menne et  al.,  2012), highlight 1882 and 1884 as heavy precipitation 
winters—years that both rank in the 90th percentile of the DJF reconstruction. The second highest recon-
structed flow is recorded for 1903, during which both the Potomac and Shenandoah rivers experienced 
March floods according to early USGS gages. Despite lower interannual correlation with early verification 
data, these estimates represent the first reconstruction of winter flow of the Potomac River and capture 
information about past extreme events. During the instrumental period (1930–2018), there is one episode 
of six consecutive years below-mean flow (during the 1960s drought). The DJF reconstruction records four 
such episodes during the 19th century: 1870–1875; 1852–1858; 1835–1841; 1818–1823 (Figures 4a and S2a). 
These periods suggest that the observations of Potomac River streamflow from the 20th and early 21st cen-
tury may not encompass the full natural variability of the system.

Perhaps the most notable feature of the JJA reconstruction is the extended record of below-mean flows 
starting around 1840 and continuing until the mid-1870s (Figures 4b and S2b). Although individual years 
reach above the long-term mean, the average baseflow from 1837 to 1874 falls below the 20th percentile of 
the instrumental data. The 1960s drought appears to be the worst consecutive 5+ year period in the recon-
struction; however, a similar extended period of summer droughts appears to have occurred in the 1820s. 
We suggest that these results should be considered by regional water resources management as they can 
provide baseline thresholds for future drought scenarios. Similarly, the 1830s high flows suggested by M3 
appear to have been greater than any period reconstructed during the 20th century.

Streamflow for DJF and JJA is significantly correlated in the instrumental data but this natural seasonal 
correlation is slightly exaggerated in the reconstructions. The increased correlation is likely to stem from 
the biophysical persistence in the tree-ring chronologies; however, the reconstructions still offer insights on 
dual season low and high-flow. Several examples of accurate seasonality are present in the reconstruction. 
The JJA estimates record extreme low flows (<5th percentile) for 1819. The conditions do not appear to have 
improved over the subsequent winter (DJF flow for 1820 < 10th percentile). In one of many letters penned 
by Thomas Jefferson on the conditions, on May 15, 1820, he wrote (Looney, 2019):

“… [the banks’] fatal effect has been greatly aggravated in this state by an unexampled drought, which 
having prevailed from June last to this time, destroyed the bread of that year, & threatens that of the 
present.”

The reconstruction captures this paired JJA drought continuing into the winter season. A historical exam-
ple of the opposite conditions is captured by the reconstructions for 1889. The reconstructions indicate high 
flows for both DJF and JJA (>90th percentile), resulting in flood conditions that caused over $1m worth of 
destruction to property on the C&O Canal between Cumberland, MD, and Washington, DC. This year also 
stands out in other proxy records that record flood-level flows (Toomey et al., 2019; Yanosky, 1983).

4.4. Limitations and Future Work

The work presented in this paper should not be considered replacements of existing reconstructions, but 
rather serve to demonstrate the value of baseflow separation in paleoclimatic reconstruction exercises. 
This is particularly important when proxy records are more closely attuned to one of these components—
baseflow capturing near-surface groundwater or stormflow capturing precipitation extremes or individual 
events. Previous reconstructions have used different seasonal targets, a greater number of predictors (i.e., 
not limited to PC1 for year t), and different approaches to model the regression. Maxwell et al. (2011; 2017) 
produced significantly higher calibration statistics for the most replicated nest; however, it is worth not-
ing that M3 presented here displays slightly higher correlation with precalibration USGS data (1901–1930; 
Maxwell et al., 2011/2017 r = 0.441/0.401 versus M3 r = 0.551). The similar results are produced despite M3 
using a smaller pool of tree-ring chronologies, fewer predictors (i.e., only PC1), and fitting solely baseflow 
with an uncalibrated climatological portion added for the stormflow component. The Maxwell et al. (2011, 
2017) reconstructions and the M3 warm season reconstruction are significantly correlated for the calibra-
tion period (1931–1980; r = 0.627/0.772), less than instrumental JJA and MJJAS streamflow (r = 0.823) but 
in line with what could be expected from the explained variances of the two reconstructions. The relation-
ship is somewhat weaker for the strongest nest of the preinstrumental period (1750–1930; r = 0.426/0.539).

TORBENSON AND STAGGE

10.1029/2020WR027706

13 of 16

 19447973, 2021, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020W

R
027706 by O

hio State U
niversity O

hio, W
iley O

nline L
ibrary on [19/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

A major limitation of the reconstructions presented here, and of dendroclimatic reconstructions in general, 
is a short calibration period. Many of the chronologies selected for PCA in this analysis, also used in the 
Maxwell et al. (2011, 2017) reconstructions, were produced in the early 1980s (e.g., Cook & Jacoby, 1983), 
which is why the end year of calibration is 1980. Extending these high-quality chronologies could provide 
more robust models. Producing new chronologies from multiple species (Maxwell et al., 2015) and the de-
velopment of EW and LW series from existing/new chronologies could provide increased skill, especially 
for the seasonal resolution of past estimates. Additionally, novel approaches to address potential sign biases 
in streamflow reconstructions have recently been developed (Robeson et al., 2020). Such methods, as well 
as further analyses on the nonstability of climate signals in tree rings, could further improve estimates of 
past flow.

Future work elsewhere may focus on stormflow in addition to, or rather than, baseflow depending on the 
local climatology. Records of tree growth have been used to reconstruct short-term precipitation events (e.g., 
Howard & Stahle, 2020) and such records most likely contain a strong stormflow signal. The spatial corre-
lation of flow in snowpack driven basins has been shown to have significant skill in predicting downstream 
gages (Ravindranath et al., 2019) and similarly, independent seasonal reconstructions may add skill from 
temporal persistence. It is likely that there are locations where both baseflow and stormflow could be recon-
structed separately if utilizing both EW and LW records of multiple species. By doing so, it may be possible 
to minimize the true uncertainty associated with paleoclimatic reconstruction of the total streamflow.

5. Conclusions
Tree-ring chronologies from the Mid-Atlantic region consistently display higher correlations with baseflow 
than with total streamflow variability of the Potomac River for both cool (DJF) and warm (JJA) periods. 
Few chronologies are correlated with stormflow despite high correlation between baseflow and stormflow, 
supporting the hypothesis that baseflow is more closely tied to tree-ring proxies in this region and that 
the stormflow component is largely noise, from a dendroclimatological perspective. Models calibrated on 
baseflow produce stronger reconstruction statistics than for streamflow, presumably for the same reason. 
For the warm season, the reconstruction skill prior to the calibration period is significantly stronger when 
using baseflow as the initial target. Combined with alternative approaches to the regression process (e.g., a 
GLM gamma-linked regression), we suggest that calibrating on one of the theoretical constituents of flow 
(in this case baseflow) can help improve the resulting reconstruction and provide more accurate uncertain-
ty estimates. The new reconstructions presented here represent conservative estimates of both winter and 
summer Potomac River streamflow, using only a single predictor (PC1) and enforcing a discrete predictor 
rule that no chronologies are shared between winter and summer reconstructions. Qualitative comparisons 
with historical records prior to the calibration period indicate that both reconstructions contain information 
on past extreme flows. Even in the most recent 200 years, for which the reconstructions have the greatest 
replication, flows outside the magnitude range of the calibration period are recorded. We hypothesize that 
the separation of flow into the theoretical constituents of base and storm components can provide useful 
information in fundamentally different hydrological settings, such as the western United States.

Data Availability Statement
The seasonal reconstructions of baseflow and streamflow are available through the NOAA NCDC Paleocli-
matology data bank (https://www.ncdc.noaa.gov/data-access/paleoclimatology-data).
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